文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在骨科创伤影像中骨折检测和分类的应用及局限性:系统评价。

What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review.

机构信息

D. W. G. Langerhuizen, R. L. Jaarsma, J. N. Doornberg, Flinders University, Department of Orthopaedic and Trauma Surgery, Flinders Medical Centre, Adelaide, Australia S. J. Janssen, Department of Orthopaedic Surgery, Amphia Hospital, Breda, the Netherlands W. H. Mallee, G. M. M. J. Kerkhoffs, Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam University Medical Centre, Amsterdam, the Netherlands M. P. J. van den Bekerom, Department of Orthopaedic Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands D. Ring, Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, TX, USA.

出版信息

Clin Orthop Relat Res. 2019 Nov;477(11):2482-2491. doi: 10.1097/CORR.0000000000000848.


DOI:10.1097/CORR.0000000000000848
PMID:31283727
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6903838/
Abstract

BACKGROUND: Artificial-intelligence algorithms derive rules and patterns from large amounts of data to calculate the probabilities of various outcomes using new sets of similar data. In medicine, artificial intelligence (AI) has been applied primarily to image-recognition diagnostic tasks and evaluating the probabilities of particular outcomes after treatment. However, the performance and limitations of AI in the automated detection and classification of fractures has not been examined comprehensively. QUESTION/PURPOSES: In this systematic review, we asked (1) What is the proportion of correctly detected or classified fractures and the area under the receiving operating characteristic (AUC) curve of AI fracture detection and classification models? (2) What is the performance of AI in this setting compared with the performance of human examiners? METHODS: The PubMed, Embase, and Cochrane databases were systematically searched from the start of each respective database until September 6, 2018, using terms related to "fracture", "artificial intelligence", and "detection, prediction, or evaluation." Of 1221 identified studies, we retained 10 studies: eight studies involved fracture detection (ankle, hand, hip, spine, wrist, and ulna), one addressed fracture classification (diaphyseal femur), and one addressed both fracture detection and classification (proximal humerus). We registered the review before data collection (PROSPERO: CRD42018110167) and used the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). We reported the range of the accuracy and AUC for the performance of the predicted fracture detection and/or classification task. An AUC of 1.0 would indicate perfect prediction, whereas 0.5 would indicate a prediction is no better than a flip-of-a-coin. We conducted quality assessment using a seven-item checklist based on a modified methodologic index for nonrandomized studies instrument (MINORS). RESULTS: For fracture detection, the AUC in five studies reflected near perfect prediction (range, 0.95-1.0), and the accuracy in seven studies ranged from 83% to 98%. For fracture classification, the AUC was 0.94 in one study, and the accuracy in two studies ranged from 77% to 90%. In two studies AI outperformed human examiners for detecting and classifying hip and proximal humerus fractures, and one study showed equivalent performance for detecting wrist, hand and ankle fractures. CONCLUSIONS: Preliminary experience with fracture detection and classification using AI shows promising performance. AI may enhance processing and communicating probabilistic tasks in medicine, including orthopaedic surgery. At present, inadequate reference standard assignments to train and test AI is the biggest hurdle before integration into clinical workflow. The next step will be to apply AI to more challenging diagnostic and therapeutic scenarios when there is absence of certitude. Future studies should also seek to address legal regulation and better determine feasibility of implementation in clinical practice. LEVEL OF EVIDENCE: Level II, diagnostic study.

摘要

背景:人工智能算法从大量数据中提取规则和模式,使用新的相似数据集来计算各种结果的概率。在医学领域,人工智能(AI)主要应用于图像识别诊断任务和评估治疗后特定结果的概率。然而,人工智能在自动检测和分类骨折方面的性能和局限性尚未得到全面评估。

问题/目的:在这项系统评价中,我们提出了以下两个问题:(1)AI 骨折检测和分类模型的正确检测或分类骨折的比例以及接收者操作特征(ROC)曲线下的面积是多少?(2)与人类检查者相比,AI 在这方面的表现如何?

方法:从每个数据库的开始日期到 2018 年 9 月 6 日,使用与“骨折”、“人工智能”和“检测、预测或评估”相关的术语,对 PubMed、Embase 和 Cochrane 数据库进行系统搜索。在 1221 项确定的研究中,我们保留了 10 项研究:8 项研究涉及骨折检测(脚踝、手、髋部、脊柱、手腕和尺骨),1 项研究涉及骨折分类(股骨骨干),1 项研究涉及骨折检测和分类(肱骨近端)。在数据收集之前,我们对该研究进行了注册(PROSPERO:CRD42018110167),并使用了系统评价和荟萃分析的首选报告项目(PRISMA)。我们报告了预测骨折检测和/或分类任务性能的准确性和 AUC 的范围。AUC 为 1.0 表示完美预测,而 0.5 表示预测不比抛硬币好。我们使用基于改良非随机研究仪器方法学指数的七个项目检查表(MINORS)对质量进行了评估。

结果:在骨折检测方面,五项研究的 AUC 反映了近乎完美的预测(范围为 0.95-1.0),七项研究的准确性范围为 83%-98%。在骨折分类方面,一项研究的 AUC 为 0.94,两项研究的准确性范围为 77%-90%。在两项研究中,AI 在检测和分类髋部和肱骨近端骨折方面优于人类检查者,一项研究在检测手腕、手部和脚踝骨折方面表现出同等的性能。

结论:使用 AI 进行骨折检测和分类的初步经验表明其具有良好的性能。AI 可能会增强医学中处理和传达概率任务的能力,包括矫形外科。目前,在将 AI 整合到临床工作流程之前,最大的障碍是缺乏用于训练和测试 AI 的适当参考标准分配。下一步将是在没有确定性的情况下,将 AI 应用于更具挑战性的诊断和治疗场景。未来的研究还应寻求解决法律监管问题,并更好地确定在临床实践中实施的可行性。

证据水平:二级,诊断研究。

相似文献

[1]
What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review.

Clin Orthop Relat Res. 2019-11

[2]
Artificial Intelligence for Hip Fracture Detection and Outcome Prediction: A Systematic Review and Meta-analysis.

JAMA Netw Open. 2023-3-1

[3]
Diagnostic accuracy and potential covariates of artificial intelligence for diagnosing orthopedic fractures: a systematic literature review and meta-analysis.

Eur Radiol. 2022-10

[4]
Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations.

Eur J Trauma Emerg Surg. 2023-4

[5]
Artificial intelligence for X-ray scaphoid fracture detection: a systematic review and diagnostic test accuracy meta-analysis.

Eur Radiol. 2024-7

[6]
The Accuracy of Artificial Intelligence Models in Hand/Wrist Fracture and Dislocation Diagnosis: A Systematic Review and Meta-Analysis.

JBJS Rev. 2024-9-1

[7]
Artificial intelligence to identify fractures on pediatric and young adult upper extremity radiographs.

Pediatr Radiol. 2023-11

[8]
Development of a diagnostic support system for distal humerus fracture using artificial intelligence.

Int Orthop. 2024-5

[9]
Artificial intelligence and machine learning on diagnosis and classification of hip fracture: systematic review.

J Orthop Surg Res. 2022-12-1

[10]
An increasing number of convolutional neural networks for fracture recognition and classification in orthopaedics : are these externally validated and ready for clinical application?

Bone Jt Open. 2021-10

引用本文的文献

[1]
Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord. 2025-9-9

[2]
Artificial intelligence in the interpretation of upper extremity trauma radiographs: a systematic review and meta-analysis.

JSES Rev Rep Tech. 2025-3-8

[3]
Open-source convolutional neural network to classify distal radial fractures according to the AO/OTA classification on plain radiographs.

Eur J Trauma Emerg Surg. 2025-7-21

[4]
Artificial Intelligence in Value-Based Health Care.

HSS J. 2025-5-28

[5]
A Neural Network Model for Intelligent Classification of Distal Radius Fractures Using Statistical Shape Model Extraction Features.

Orthop Surg. 2025-5

[6]
Revolutionizing total hip arthroplasty: The role of artificial intelligence and machine learning.

J Exp Orthop. 2025-3-22

[7]
Is there a difference between the incidence of subtypes of tibial plateau fractures between six different level 1, level 2 and level 3 trauma centers in the Netherlands?

BMC Musculoskelet Disord. 2025-2-19

[8]
Machine Learning-Aided Diagnosis Enhances Human Detection of Perilunate Dislocations.

Hand (N Y). 2025-1-15

[9]
Automated diagnosis and classification of metacarpal and phalangeal fractures using a convolutional neural network: a retrospective data analysis study.

Acta Orthop. 2025-1-9

[10]
Artificial intelligence in fracture detection on radiographs: a literature review.

Jpn J Radiol. 2025-4

本文引用的文献

[1]
Questions for Artificial Intelligence in Health Care.

JAMA. 2019-1-1

[2]
Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis.

Neurosurgery. 2019-7-1

[3]
Deep neural network improves fracture detection by clinicians.

Proc Natl Acad Sci U S A. 2018-10-22

[4]
Can Machine-learning Techniques Be Used for 5-year Survival Prediction of Patients With Chondrosarcoma?

Clin Orthop Relat Res. 2018-10

[5]
Clinical Implications and Challenges of Artificial Intelligence and Deep Learning.

JAMA. 2018-9-18

[6]
Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network.

Skeletal Radiol. 2019-2

[7]
Automated detection and classification of the proximal humerus fracture by using deep learning algorithm.

Acta Orthop. 2018-3-26

[8]
Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.

Clin Radiol. 2018-5

[9]
What This Computer Needs Is a Physician: Humanism and Artificial Intelligence.

JAMA. 2018-1-2

[10]
Artificial intelligence for analyzing orthopedic trauma radiographs.

Acta Orthop. 2017-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索