文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

阐明导致功能丧失和疾病的人类 ALAS2 C 末端突变的作用。

Elucidating the Role of Human ALAS2 C-terminal Mutations Resulting in Loss of Function and Disease.

出版信息

Biochemistry. 2024 Jul 2;63(13):1636-1646. doi: 10.1021/acs.biochem.4c00066. Epub 2024 Jun 18.


DOI:10.1021/acs.biochem.4c00066
PMID:38888931
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11223264/
Abstract

The conserved enzyme aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in certain bacteria and eukaryotes by catalyzing the condensation of glycine and succinyl-CoA to yield aminolevulinic acid. In humans, the ALAS isoform responsible for heme production during red blood cell development is the erythroid-specific ALAS2 isoform. Owing to its essential role in erythropoiesis, changes in human ALAS2 (hALAS2) function can lead to two different blood disorders. X-linked sideroblastic anemia results from loss of ALAS2 function, while X-linked protoporphyria results from gain of ALAS2 function. Interestingly, mutations in the ALAS2 C-terminal extension can be implicated in both diseases. Here, we investigate the molecular basis for enzyme dysfunction mediated by two previously reported C-terminal loss-of-function variants, hALAS2 V562A and M567I. We show that the mutations do not result in gross structural perturbations, but the enzyme stability for V562A is decreased. Additionally, we show that enzyme stability moderately increases with the addition of the pyridoxal 5'-phosphate (PLP) cofactor for both variants. The variants display differential binding to PLP and the individual substrates compared to wild-type hALAS2. Although hALAS2 V562A is a more active enzyme , it is less efficient concerning succinyl-CoA binding. In contrast, the M567I mutation significantly alters the cooperativity of substrate binding. In combination with previously reported cell-based studies, our work reveals the molecular basis by which hALAS2 C-terminal mutations negatively affect ALA production necessary for proper heme biosynthesis.

摘要

保守的酶氨基乙酰丙酸合酶(ALAS)通过催化甘氨酸和琥珀酰辅酶 A 的缩合,在某些细菌和真核生物中起始血红素生物合成,生成氨基乙酰丙酸。在人类中,负责红细胞发育过程中血红素生成的 ALAS 同工酶是红细胞特异性的 ALAS2 同工酶。由于其在红细胞生成中的重要作用,人类 ALAS2(hALAS2)功能的改变可导致两种不同的血液疾病。X 连锁铁粒幼细胞性贫血是由于 ALAS2 功能丧失引起的,而 X 连锁原卟啉症则是由于 ALAS2 功能获得引起的。有趣的是,ALAS2 C 端延伸中的突变可与这两种疾病相关。在这里,我们研究了两种先前报道的 C 端失功能变体 hALAS2 V562A 和 M567I 介导的酶功能障碍的分子基础。我们表明,突变不会导致明显的结构扰动,但 V562A 的酶稳定性降低。此外,我们表明,对于两种变体,酶稳定性随着吡哆醛 5'-磷酸(PLP)辅因子的添加而适度增加。与野生型 hALAS2 相比,变体显示出与 PLP 和单个底物的不同结合。尽管 hALAS2 V562A 是一种更活跃的酶,但它在结合琥珀酰辅酶 A 方面的效率较低。相比之下,M567I 突变显著改变了底物结合的协同性。结合先前报道的基于细胞的研究,我们的工作揭示了 hALAS2 C 端突变如何通过负性影响血红素生物合成所必需的 ALA 产生来影响 ALA 产生的分子基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/c3bb426f9c74/bi4c00066_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/987d83792ce3/bi4c00066_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/3b302781287e/bi4c00066_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/c106f018d781/bi4c00066_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/0f1c2e22f674/bi4c00066_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/4fec83339d2a/bi4c00066_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/094b3cee227e/bi4c00066_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/c3bb426f9c74/bi4c00066_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/987d83792ce3/bi4c00066_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/3b302781287e/bi4c00066_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/c106f018d781/bi4c00066_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/0f1c2e22f674/bi4c00066_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/4fec83339d2a/bi4c00066_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/094b3cee227e/bi4c00066_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838f/11223264/c3bb426f9c74/bi4c00066_0007.jpg

相似文献

[1]
Elucidating the Role of Human ALAS2 C-terminal Mutations Resulting in Loss of Function and Disease.

Biochemistry. 2024-7-2

[2]
Anti-Correlation between the Dynamics of the Active Site Loop and C-Terminal Tail in Relation to the Homodimer Asymmetry of the Mouse Erythroid 5-Aminolevulinate Synthase.

Int J Mol Sci. 2018-6-28

[3]
Isoniazid inhibits human erythroid 5-aminolevulinate synthase: Molecular mechanism and tolerance study with four X-linked protoporphyria patients.

Biochim Biophys Acta Mol Basis Dis. 2016-11-10

[4]
Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release.

Biochemistry. 2015-9-15

[5]
Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias.

Mol Genet Metab. 2019-1-23

[6]
X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the β-subunit of succinyl-CoA synthetase (SUCLA2).

J Biol Chem. 2012-6-27

[7]
Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia.

Biochem Biophys Res Commun. 2014-11-7

[8]
Structural basis for dysregulation of aminolevulinic acid synthase in human disease.

J Biol Chem. 2022-3

[9]
ALAS2 acts as a modifier gene in patients with congenital erythropoietic porphyria.

Blood. 2011-6-7

[10]
Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release.

Nat Commun. 2020-6-4

本文引用的文献

[1]
Accurate proteome-wide missense variant effect prediction with AlphaMissense.

Science. 2023-9-22

[2]
Mitochondrial complexome reveals quality-control pathways of protein import.

Nature. 2023-2

[3]
Succinyl-CoA-based energy metabolism dysfunction in chronic heart failure.

Proc Natl Acad Sci U S A. 2022-10-11

[4]
A primer on heme biosynthesis.

Biol Chem. 2022-11-25

[5]
An Extended C-Terminus, the Possible Culprit for Differential Regulation of 5-Aminolevulinate Synthase Isoforms.

Front Mol Biosci. 2022-7-14

[6]
ColabFold: making protein folding accessible to all.

Nat Methods. 2022-6

[7]
Congenital sideroblastic anemia model due to ALAS2 mutation is susceptible to ferroptosis.

Sci Rep. 2022-5-30

[8]
Structural basis for dysregulation of aminolevulinic acid synthase in human disease.

J Biol Chem. 2022-3

[9]
Heme-dependent recognition of 5-aminolevulinate synthase by the human mitochondrial molecular chaperone ClpX.

FEBS Lett. 2021-12

[10]
Highly accurate protein structure prediction with AlphaFold.

Nature. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索