Suppr超能文献

延长的C末端,可能是5-氨基酮戊酸合酶同工型差异调节的罪魁祸首。

An Extended C-Terminus, the Possible Culprit for Differential Regulation of 5-Aminolevulinate Synthase Isoforms.

作者信息

Hunter Gregory A, Ferreira Gloria C

机构信息

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.

Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, United States.

出版信息

Front Mol Biosci. 2022 Jul 14;9:920668. doi: 10.3389/fmolb.2022.920668. eCollection 2022.

Abstract

5-Aminolevulinate synthase (ALAS; E.C. 2.3.1.37) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the key regulatory step of porphyrin biosynthesis in metazoa, fungi, and α-proteobacteria. ALAS is evolutionarily related to transaminases and is therefore classified as a fold type I PLP-dependent enzyme. As an enzyme controlling the key committed and rate-determining step of a crucial biochemical pathway ALAS is ideally positioned to be subject to allosteric feedback inhibition. Extensive kinetic and mutational studies demonstrated that the overall enzyme reaction is limited by subtle conformational changes of a hairpin loop gating the active site. These findings, coupled with structural information, facilitated early prediction of allosteric regulation of activity via an extended C-terminal tail unique to eukaryotic forms of the enzyme. This prediction was subsequently supported by the discoveries that mutations in the extended C-terminus of the erythroid ALAS isoform (ALAS2) cause a metabolic disorder known as X-linked protoporphyria not by diminishing activity, but by enhancing it. Furthermore, kinetic, structural, and molecular modeling studies demonstrated that the extended C-terminal tail controls the catalytic rate by modulating conformational flexibility of the active site loop. However, the precise identity of any such molecule remains to be defined. Here we discuss the most plausible allosteric regulators of ALAS activity based on divergences in AlphaFold-predicted ALAS structures and suggest how the mystery of the mechanism whereby the extended C-terminus of mammalian ALASs allosterically controls the rate of porphyrin biosynthesis might be unraveled.

摘要

5-氨基酮戊酸合酶(ALAS;E.C. 2.3.1.37)是一种依赖于磷酸吡哆醛(PLP)的酶,它催化后生动物、真菌和α-变形菌中卟啉生物合成的关键调控步骤。ALAS在进化上与转氨酶相关,因此被归类为I型折叠依赖PLP的酶。作为控制关键生化途径中关键的限速步骤的酶,ALAS处于接受变构反馈抑制的理想位置。广泛的动力学和突变研究表明,整个酶反应受到控制活性位点的发夹环细微构象变化的限制。这些发现,再加上结构信息,促进了通过该酶真核形式特有的延长C末端尾巴对活性变构调节的早期预测。这一预测随后得到了以下发现支持:红系ALAS同工型(ALAS2)延长C末端的突变导致一种称为X连锁原卟啉症的代谢紊乱,不是通过降低活性,而是通过增强活性。此外,动力学、结构和分子建模研究表明,延长的C末端尾巴通过调节活性位点环的构象灵活性来控制催化速率。然而,任何此类分子的确切身份仍有待确定。在这里,我们根据AlphaFold预测的ALAS结构差异讨论ALAS活性最合理的变构调节因子,并提出如何解开哺乳动物ALASs延长C末端变构控制卟啉生物合成速率机制之谜。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a33/9329541/798ca8fb4525/fmolb-09-920668-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验