Han Lin, Pendleton Augustus, Singh Adarsh, Xu Raymond, Scott Samantha A, Palma Jaymee A, Diebold Peter, Malarney Kien P, Brito Ilana L, Chang Pamela V
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
Cell Chem Biol. 2025 Jan 16;32(1):145-156.e9. doi: 10.1016/j.chembiol.2024.05.009. Epub 2024 Jun 17.
The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.
肠道微生物群拥有众多生物合成影响人类健康代谢物的生化酶。胆汁酸是一类多样的代谢物集合,在代谢和免疫中发挥重要作用。负责胆汁酸代谢起始反应的肠道微生物群相关酶是胆汁盐水解酶(BSH),它控制着宿主的整体胆汁酸池。尽管这些酶起着关键作用,但由于肠道微生物群的复杂性,对其活性和底物偏好进行分析仍然具有挑战性,其元蛋白质组包含种类繁多的蛋白质类别。通过使用基于活性探针的系统生物化学方法,我们鉴定出了具有不同底物偏好的肠道微生物群相关BSH,这表明不同的微生物促成了宿主胆汁酸池的多样性。我们设想这种化学蛋白质组学方法将揭示由BSH控制的次级胆汁酸代谢如何导致各种炎症性疾病的病因。