Suppr超能文献

BSH-TRAP:基于活性探针的胆汁盐水解酶标记和回收。

BSH-TRAP: Bile salt hydrolase tagging and retrieval with activity-based probes.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.

Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States; Cornell Center for Immunology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions & Disease, Cornell University, Ithaca, NY, United States.

出版信息

Methods Enzymol. 2022;664:85-102. doi: 10.1016/bs.mie.2021.12.002. Epub 2021 Dec 31.

Abstract

Bile acids are important molecules that participate in digestion and regulate many host physiological processes, including metabolism and inflammation. Primary bile acids are biosynthesized from cholesterol in the liver, where they are conjugated to glycine and taurine before secretion into the intestines. A small fraction of these molecules remain in the gut, where they are modified by a microbial enzyme, bile salt hydrolase (BSH), which deconjugates the glycine and taurine groups. This deconjugation precedes all subsequent biotransformation in the intestines, including regioselective dehydroxylation and epimerization reactions, to produce numerous secondary bile acids. Thus, BSH is considered the gatekeeper enzyme of secondary bile acid metabolism, and, as a result, it controls the overall bile acid composition in the host. Despite the critical role that BSH plays in bile acid metabolism, there exist few tools to probe its activity in complex biological mixtures. In this chapter, we describe a chemoproteomic approach termed BSH-TRAP (bile salt hydrolase tagging and retrieval with activity-based probes) that enables visualization and identification of BSH activity in bacteria. Here, we describe application of BSH-TRAP to cultured bacterial strains and the gut microbes derived from mice. We envision that BSH-TRAP could be used to profile changes in BSH activity and identify novel BSH enzymes in complex biological samples, such as the gut microbiome.

摘要

胆汁酸是参与消化和调节许多宿主生理过程的重要分子,包括代谢和炎症。初级胆汁酸是在肝脏中从胆固醇生物合成的,在那里它们与甘氨酸和牛磺酸结合,然后分泌到肠道中。这些分子的一小部分留在肠道中,在那里被微生物酶胆汁盐水解酶(BSH)修饰,BSH 将甘氨酸和牛磺酸基团脱共轭。这种脱共轭发生在肠道中所有随后的生物转化之前,包括区域选择性去羟化和差向异构化反应,产生许多次级胆汁酸。因此,BSH 被认为是次级胆汁酸代谢的守门酶,并且,因此,它控制宿主中总体胆汁酸组成。尽管 BSH 在胆汁酸代谢中起着关键作用,但几乎没有工具可以在复杂的生物混合物中探测其活性。在本章中,我们描述了一种称为 BSH-TRAP(基于活性探针的胆汁盐水解酶标记和回收)的化学蛋白质组学方法,该方法可用于可视化和鉴定细菌中的 BSH 活性。在这里,我们描述了 BSH-TRAP 在培养的细菌菌株和源自小鼠的肠道微生物中的应用。我们设想 BSH-TRAP 可用于分析复杂生物样本(如肠道微生物组)中 BSH 活性的变化,并鉴定新型 BSH 酶。

相似文献

1
BSH-TRAP: Bile salt hydrolase tagging and retrieval with activity-based probes.
Methods Enzymol. 2022;664:85-102. doi: 10.1016/bs.mie.2021.12.002. Epub 2021 Dec 31.
2
Bile Salt Hydrolase Activity-Based Probes for Monitoring Gut Microbial Bile Acid Metabolism.
Chembiochem. 2024 May 17;25(10):e202300821. doi: 10.1002/cbic.202300821. Epub 2024 Apr 24.
3
Bile salt hydrolase profiling by fluorogenic probes in the human gut microbiome.
Methods Enzymol. 2022;664:243-265. doi: 10.1016/bs.mie.2021.11.022. Epub 2021 Dec 9.
5
New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health.
Food Res Int. 2018 Oct;112:250-262. doi: 10.1016/j.foodres.2018.06.035. Epub 2018 Jun 20.
7
Interactions between gut bacteria and bile in health and disease.
Mol Aspects Med. 2017 Aug;56:54-65. doi: 10.1016/j.mam.2017.06.002. Epub 2017 Jun 21.
8
All 4 bile salt hydrolase proteins are responsible for the hydrolysis activity in Lactobacillus plantarum ST-III.
J Food Sci. 2011 Nov-Dec;76(9):M622-8. doi: 10.1111/j.1750-3841.2011.02431.x.
9
Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases.
Cell Chem Biol. 2025 Jan 16;32(1):145-156.e9. doi: 10.1016/j.chembiol.2024.05.009. Epub 2024 Jun 17.
10
Electrostatic Interactions Dictate Bile Salt Hydrolase Substrate Preference.
Biochemistry. 2023 Nov 7;62(21):3076-3084. doi: 10.1021/acs.biochem.3c00210. Epub 2023 Oct 26.

引用本文的文献

1
Identification of novel probiotic lactic acid bacteria from soymilk waste using the 16s rRNA gene for potential use in poultry.
Vet World. 2024 May;17(5):1001-1011. doi: 10.14202/vetworld.2024.1001-1011. Epub 2024 May 9.
2
Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases.
Cell Chem Biol. 2025 Jan 16;32(1):145-156.e9. doi: 10.1016/j.chembiol.2024.05.009. Epub 2024 Jun 17.
3
Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases.
bioRxiv. 2024 Apr 1:2024.04.01.587558. doi: 10.1101/2024.04.01.587558.
4
Bile Salt Hydrolase Activity-Based Probes for Monitoring Gut Microbial Bile Acid Metabolism.
Chembiochem. 2024 May 17;25(10):e202300821. doi: 10.1002/cbic.202300821. Epub 2024 Apr 24.

本文引用的文献

1
Bioorthogonal chemistry.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00028-z. Epub 2021 Apr 15.
2
Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians.
Nature. 2021 Nov;599(7885):458-464. doi: 10.1038/s41586-021-03832-5. Epub 2021 Jul 29.
3
A Gut-Restricted Lithocholic Acid Analog as an Inhibitor of Gut Bacterial Bile Salt Hydrolases.
ACS Chem Biol. 2021 Aug 20;16(8):1401-1412. doi: 10.1021/acschembio.1c00192. Epub 2021 Jul 19.
4
Noninvasive imaging and quantification of bile salt hydrolase activity: From bacteria to humans.
Sci Adv. 2021 Feb 3;7(6). doi: 10.1126/sciadv.aaz9857. Print 2021 Feb.
5
Activity-Based Protein Profiling of Bile Salt Hydrolysis in the Human Gut Microbiome with Beta-Lactam or Acrylamide-Based Probes.
Chembiochem. 2021 Apr 16;22(8):1448-1455. doi: 10.1002/cbic.202000748. Epub 2021 Feb 10.
7
The Intestinal Microbiome Restricts Alphavirus Infection and Dissemination through a Bile Acid-Type I IFN Signaling Axis.
Cell. 2020 Aug 20;182(4):901-918.e18. doi: 10.1016/j.cell.2020.06.029. Epub 2020 Jul 14.
8
Interpersonal Gut Microbiome Variation Drives Susceptibility and Resistance to Cholera Infection.
Cell. 2020 Jun 25;181(7):1533-1546.e13. doi: 10.1016/j.cell.2020.05.036. Epub 2020 Jun 16.
9
A metabolic pathway for bile acid dehydroxylation by the gut microbiome.
Nature. 2020 Jun;582(7813):566-570. doi: 10.1038/s41586-020-2396-4. Epub 2020 Jun 17.
10
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells.
Nature. 2020 May;581(7809):475-479. doi: 10.1038/s41586-020-2193-0. Epub 2020 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验