Suppr超能文献

基于新型度拓扑指数的分形三角苯并菲类化合物物理化学性质的结构-性质建模

Structure-property modeling of physicochemical properties of fractal trigonal triphenylenoids by means of novel degree-based topological indices.

作者信息

Jyothish K, Santiago Roy, Govardhan S, Hayat Sakander

机构信息

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.

Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jln Tungku Link, Gadong, BE1410, Brunei Darussalam.

出版信息

Eur Phys J E Soft Matter. 2024 Jun 18;47(6):42. doi: 10.1140/epje/s10189-024-00438-3.

Abstract

Trigonal triphenylenoids (TTPs) are a fascinating class of organic molecules with unique structural and electronic properties. Their diverse applications, ranging from organic electronics to nonlinear optics, have spurred significant research interest in understanding their physicochemical behavior. Topological indices, mathematical descriptors derived from the molecular graph, offer valuable insights into the structural complexity and potential properties of TTPs. This work focuses on exploring the utility of degree-based topological indices in characterizing and predicting the properties of trigonal triphenylenoids. We systematically calculate various degree-based topological indices, for a diverse set of TTPs with varying substituents and topologies. The relationships between these indices and key physicochemical properties, such as HOMO-LUMO energy gap, thermodynamic stability, and reactivity are investigated using statistical and machine learning approaches. We identify significant correlations between specific degree-based indices and different properties, allowing for potential prediction of these properties based solely on the topological information.

摘要

三角苯并菲类化合物(TTPs)是一类具有独特结构和电子性质的迷人有机分子。它们的应用广泛,从有机电子学领域到非线性光学领域,这激发了人们对理解其物理化学行为的浓厚研究兴趣。拓扑指数是从分子图导出的数学描述符,能为TTPs的结构复杂性和潜在性质提供有价值的见解。这项工作着重探索基于度的拓扑指数在表征和预测三角苯并菲类化合物性质方面的效用。我们系统地计算了各种具有不同取代基和拓扑结构的TTPs的基于度的拓扑指数。使用统计和机器学习方法研究了这些指数与关键物理化学性质之间的关系,这些性质包括最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)能隙、热力学稳定性和反应活性。我们确定了特定基于度的指数与不同性质之间的显著相关性,从而能够仅基于拓扑信息对这些性质进行潜在预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验