Suppr超能文献

动物连接的共价有机框架中的拓扑信息熵和光谱能量分析。

Topological information entropy and spectral energy analysis in aminal-linked covalent organic frameworks.

作者信息

Zhang Xiujun, Arockiaraj Micheal, Maaran Aravindan, Doss C I Arokiya

机构信息

School of Artificial Intelligence, Chengdu Polytechnic, Chengdu, 610041, Sichuan, China.

Department of Mathematics, Loyola College, Chennai, 600034, India.

出版信息

Sci Rep. 2025 Jun 5;15(1):19861. doi: 10.1038/s41598-025-01210-z.

Abstract

The development of novel topologies in covalent organic frameworks (COFs) enhances reticular chemistry and materials science, offering a systematic approach to constructing COFs and uncovering intricate relationships between their structures and properties. The inclusion of aminal derived linkages enables COFs with greater structural diversity and exceptional functionalities. This study examines the graph-structural properties of aminal-linked COFs using entropy information and hybrid topological descriptors, determining their topological complexity. Additionally, we employ these descriptors as the basis for robust statistical regression models, facilitating the generation of graph energies for these frameworks and the analysis of HOMO-LUMO gaps.

摘要

共价有机框架(COFs)中新型拓扑结构的发展增强了网状化学和材料科学,为构建COFs以及揭示其结构与性质之间的复杂关系提供了一种系统方法。引入氨基衍生键使COFs具有更大的结构多样性和卓越的功能。本研究利用熵信息和混合拓扑描述符研究了氨基连接的COFs的图结构性质,确定了它们的拓扑复杂性。此外,我们将这些描述符用作稳健统计回归模型的基础,便于生成这些框架的图能量并分析HOMO-LUMO能隙。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3a/12141726/0e920a3a8f71/41598_2025_1210_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验