Department of Electronics and Automation, Vocational School, Dogus University, Istanbul, 34775, Türkiye.
Environ Sci Pollut Res Int. 2024 Jun;31(30):43211-43237. doi: 10.1007/s11356-024-33785-x. Epub 2024 Jun 19.
Today's many giant sectors including energy, industry, tourism, and agriculture should closely track the variation trends of solar radiation to take more benefit from the sun. However, the scarcity of solar radiation measuring stations represents a significant obstacle. This has prompted research into the estimation of global solar radiation (GSR) for various regions using existing climatic and atmospheric parameters. While prediction methods cannot supplant the precision of direct measurements, they are invaluable for studying and utilizing solar energy on a global scale. From this point of view, this paper has focused on predicting daily GSR data in three provinces (Afyonkarahisar, Rize, and Ağrı) which exhibit disparate solar radiation distributions in Türkiye. In this context, Gradient-Based Optimizer (GBO), Harris Hawks Optimization (HHO), Barnacles Mating Optimizer (BMO), Sine Cosine Algorithm (SCA), and Henry Gas Solubility Optimization (HGSO) have been employed to model the daily GSR data. The algorithms were calibrated with daily historical data of five input variables including sunshine duration, actual pressure, moisture, wind speed, and ambient temperature between 2010 and 2017 years. Then, they were tested with daily data for the 2018 year. In the study, a series of statistical metrics (R, MABE, RMSE, and MBE) were employed to elucidate the algorithm that predicts solar radiation data with higher accuracy. The prediction results demonstrated that all algorithms achieved the highest R value in Rize province. It has been found that SCA (MABE of 0.7023 MJ/m, RMSE of 0.9121 MJ/m, and MBE of 0.2430 MJ/m) for Afyonkarahisar province and GBO (RMSE of 0.8432 MJ/m, MABE of 0.6703 MJ/m, and R of 0.8810) for Ağrı province are the most effective algorithms for estimating GSR data. The findings indicate that each of the metaheuristic algorithms tested in this paper has the potential to predict daily GSR data within a satisfactory error range. However, the GBO and SCA algorithms provided the most accurate predictions of daily GSR data.
今天,许多大型领域,包括能源、工业、旅游和农业,都应该密切跟踪太阳辐射的变化趋势,以从太阳中获得更多的利益。然而,太阳辐射测量站的稀缺性是一个重大障碍。这促使人们研究利用现有气候和大气参数来估算各地区的太阳总辐射(GSR)。虽然预测方法不能替代直接测量的精度,但对于在全球范围内研究和利用太阳能来说,它们是非常宝贵的。从这个角度来看,本文主要关注于预测土耳其三个省份(阿菲永卡拉希萨尔、里泽和阿格里)的日 GSR 数据,这三个省份的太阳辐射分布差异很大。在这方面,梯度优化器(GBO)、哈里斯鹰优化器(HHO)、藤壶交配优化器(BMO)、正弦余弦算法(SCA)和亨利气体溶解度优化器(HGSO)被用于对每日 GSR 数据进行建模。这些算法使用了 2010 年至 2017 年期间五个输入变量(日照时间、实际压力、湿度、风速和环境温度)的每日历史数据进行校准,然后用 2018 年的每日数据进行测试。在研究中,使用了一系列统计指标(R、MABE、RMSE 和 MBE)来阐明能够更准确地预测太阳辐射数据的算法。预测结果表明,所有算法在里泽省都达到了最高的 R 值。结果表明,对于阿菲永卡拉希萨尔省,SCA(MABE 为 0.7023MJ/m、RMSE 为 0.9121MJ/m 和 MBE 为 0.2430MJ/m)和对于阿格里省,GBO(RMSE 为 0.8432MJ/m、MABE 为 0.6703MJ/m 和 R 为 0.8810)是估计 GSR 数据的最有效算法。研究结果表明,本文测试的每种元启发式算法都有可能在可接受的误差范围内预测日 GSR 数据。然而,GBO 和 SCA 算法对日 GSR 数据的预测最为准确。