Suppr超能文献

在辐照度测量稀缺情况下的准确总太阳辐照度估计。

Accurate total solar irradiance estimates under irradiance measurements scarcity scenarios.

机构信息

Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.

Instituto de Física Enrique Gaviola (IFEG)/CONICET, Ciudad Universitaria, 5000, Córdoba, Argentina.

出版信息

Environ Monit Assess. 2019 Aug 15;191(9):568. doi: 10.1007/s10661-019-7742-3.

Abstract

Accurate estimates of total global solar irradiance reaching the Earth's surface are relevant since routine measurements are not always available. This work aimed to determine which of the models used to estimate daily total global solar irradiance (TGSI) is the best model when irradiance measurements are scarce in a given site. A model based on an artificial neural network (ANN) and empirical models based on temperature and sunshine measurements were analyzed and evaluated in Córdoba, Argentina. The performance of the models was benchmarked using different statistical estimators such as the mean bias error (MBE), the mean absolute bias error (MABE), the correlation coefficient (r), the Nash-Sutcliffe equation (NSE), and the statistics t test (t value). The results showed that when enough measurements were available, both the ANN and the empirical models accurately predicted TGSI (with MBE and MABE ≤ |0.11| and ≤ |1.98| kWh m day, respectively; NSE ≥ 0.83; r ≥ 0.95; and |t values| < t critical value). However, when few TGSI measurements were available (2, 3, 5, 7, or 10 days per month) only the ANN-based method was accurate (|t value| < t critical value), yielding precise results although only 2 measurements per month were available for 1 year. This model has an important advantage over the empirical models and is very relevant to Argentina due to the scarcity of TGSI measurements.

摘要

准确估计到达地球表面的全球太阳总辐照度很重要,因为并非总能进行常规测量。本工作旨在确定在特定地点辐照度测量稀缺时,用于估算日总全球太阳辐照度(TGSI)的模型中,哪一个是最佳模型。在阿根廷科尔多瓦,分析和评估了基于人工神经网络(ANN)的模型和基于温度和日照测量的经验模型。使用不同的统计估计器(如平均偏差误差(MBE)、平均绝对偏差误差(MABE)、相关系数(r)、纳什-苏特克利夫方程(NSE)和统计 t 检验(t 值))对模型的性能进行了基准测试。结果表明,当有足够的测量数据时,ANN 和经验模型都能准确地预测 TGSI(MBE 和 MABE 分别为≤|0.11|和≤|1.98|kWh m day;NSE≥0.83;r≥0.95;|t 值|<t 临界值)。然而,当 TGSI 测量数据较少(每月 2、3、5、7 或 10 天)时,只有基于 ANN 的方法是准确的(|t 值|<t 临界值),尽管每月仅提供 2 次测量,1 年内也能得到精确的结果。与经验模型相比,该模型具有重要优势,并且由于 TGSI 测量稀缺,对阿根廷具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验