Cassella Gino, Foulkes W M C, Pfau David, Spencer James S
Dept. of Physics, Imperial College London, London, SW7 2AZ, UK.
DeepMind, London, N1C 4DJ, UK.
Nat Commun. 2024 Jun 18;15(1):5214. doi: 10.1038/s41467-024-49290-1.
Quantum chemical calculations of the ground-state properties of positron-molecule complexes are challenging. The main difficulty lies in employing an appropriate basis set for representing the coalescence between electrons and a positron. Here, we tackle this problem with the recently developed Fermionic neural network (FermiNet) wavefunction, which does not depend on a basis set. We find that FermiNet produces highly accurate, in some cases state-of-the-art, ground-state energies across a range of atoms and small molecules with a wide variety of qualitatively distinct positron binding characteristics. We calculate the binding energy of the challenging non-polar benzene molecule, finding good agreement with the experimental value, and obtain annihilation rates which compare favourably with those obtained with explicitly correlated Gaussian wavefunctions. Our results demonstrate a generic advantage of neural network wavefunction-based methods and broaden their applicability to systems beyond the standard molecular Hamiltonian.
正电子 - 分子复合物基态性质的量子化学计算具有挑战性。主要困难在于采用合适的基组来描述电子与正电子之间的结合。在此,我们使用最近开发的费米子神经网络(FermiNet)波函数来解决这个问题,该波函数不依赖于基组。我们发现,FermiNet能在一系列具有各种定性不同正电子束缚特征的原子和小分子中产生高度精确的基态能量,在某些情况下达到了当前的先进水平。我们计算了具有挑战性的非极性苯分子的结合能,发现与实验值吻合良好,并获得了与使用显式相关高斯波函数得到的结果相比具有优势的湮灭率。我们的结果证明了基于神经网络波函数的方法的普遍优势,并拓宽了它们在标准分子哈密顿量之外的系统中的适用性。