Suppr超能文献

通过神经网络上的扩散蒙特卡罗方法走向分子的基态。

Towards the ground state of molecules via diffusion Monte Carlo on neural networks.

机构信息

ByteDance Research, Zhonghang Plaza, No. 43, North 3rd Ring West Road, Haidian District, Beijing, People's Republic of China.

School of Physics, Peking University, 100871, Beijing, People's Republic of China.

出版信息

Nat Commun. 2023 Apr 3;14(1):1860. doi: 10.1038/s41467-023-37609-3.

Abstract

Diffusion Monte Carlo (DMC) based on fixed-node approximation has enjoyed significant developments in the past decades and become one of the go-to methods when accurate ground state energy of molecules and materials is needed. However, the inaccurate nodal structure hinders the application of DMC for more challenging electronic correlation problems. In this work, we apply the neural-network based trial wavefunction in fixed-node DMC, which allows accurate calculations of a broad range of atomic and molecular systems of different electronic characteristics. Our method is superior in both accuracy and efficiency compared to state-of-the-art neural network methods using variational Monte Carlo (VMC). We also introduce an extrapolation scheme based on the empirical linearity between VMC and DMC energies, and significantly improve our binding energy calculation. Overall, this computational framework provides a benchmark for accurate solutions of correlated electronic wavefunction and also sheds light on the chemical understanding of molecules.

摘要

基于固定节点逼近的扩散蒙特卡罗(DMC)在过去几十年中得到了显著发展,成为需要准确计算分子和材料基态能量时的首选方法之一。然而,不准确的节点结构阻碍了 DMC 在更具挑战性的电子相关问题中的应用。在这项工作中,我们在固定节点 DMC 中应用了基于神经网络的试探波函数,这使得对具有不同电子特性的各种原子和分子系统进行准确计算成为可能。与使用变分蒙特卡罗(VMC)的最先进的神经网络方法相比,我们的方法在准确性和效率方面都具有优势。我们还引入了一种基于 VMC 和 DMC 能量之间经验线性关系的外推方案,从而显著提高了我们的结合能计算。总的来说,这个计算框架为相关电子波函数的精确解提供了基准,也为分子的化学理解提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18c/10070323/5f6e5b4743da/41467_2023_37609_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验