文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

关于人工智能在化学领域潜力的跨学科观点。

Cross-disciplinary perspectives on the potential for artificial intelligence across chemistry.

作者信息

Mroz Austin M, Basford Annabel R, Hastedt Friedrich, Jayasekera Isuru Shavindra, Mosquera-Lois Irea, Sedgwick Ruby, Ballester Pedro J, Bocarsly Joshua D, Antonio Del Río Chanona Ehecatl, Evans Matthew L, Frost Jarvist M, Ganose Alex M, Greenaway Rebecca L, Kuok Mimi Hii King, Li Yingzhen, Misener Ruth, Walsh Aron, Zhang Dandan, Jelfs Kim E

机构信息

Department of Chemistry, Imperial College London, London W12 0BZ, UK.

I-X Centre for AI in Science, Imperial College London, London W12 0BZ, UK.

出版信息

Chem Soc Rev. 2025 Apr 25. doi: 10.1039/d5cs00146c.


DOI:10.1039/d5cs00146c
PMID:40278836
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12024683/
Abstract

From accelerating simulations and exploring chemical space, to experimental planning and integrating automation within experimental labs, artificial intelligence (AI) is changing the landscape of chemistry. We are seeing a significant increase in the number of publications leveraging these powerful data-driven insights and models to accelerate all aspects of chemical research. For example, how we represent molecules and materials to computer algorithms for predictive and generative models, as well as the physical mechanisms by which we perform experiments in the lab for automation. Here, we present ten diverse perspectives on the impact of AI coming from those with a range of backgrounds from experimental chemistry, computational chemistry, computer science, engineering and across different areas of chemistry, including drug discovery, catalysis, chemical automation, chemical physics, materials chemistry. The ten perspectives presented here cover a range of themes, including AI for computation, facilitating discovery, supporting experiments, and enabling technologies for transformation. We highlight and discuss imminent challenges and ways in which we are redefining problems to accelerate the impact of chemical research AI.

摘要

从加速模拟和探索化学空间,到实验规划以及在实验室内整合自动化,人工智能(AI)正在改变化学领域的面貌。我们看到,利用这些强大的、由数据驱动的见解和模型来加速化学研究各个方面的出版物数量大幅增加。例如,我们如何将分子和材料呈现给计算机算法以用于预测性和生成性模型,以及我们在实验室中进行自动化实验的物理机制。在此,我们呈现了来自实验化学、计算化学、计算机科学、工程学以及化学不同领域(包括药物发现、催化、化学自动化、化学物理、材料化学)等一系列背景人士关于人工智能影响的十种不同观点。这里呈现的十种观点涵盖了一系列主题,包括用于计算的人工智能、促进发现、支持实验以及实现变革的技术。我们强调并讨论了迫在眉睫的挑战以及我们重新定义问题以加速化学研究中人工智能影响的方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/4633a3d94c37/d5cs00146c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/99632ce4a783/d5cs00146c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/174ade589938/d5cs00146c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/d6a1396fb4fa/d5cs00146c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/8817afaf8fad/d5cs00146c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/4633a3d94c37/d5cs00146c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/99632ce4a783/d5cs00146c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/174ade589938/d5cs00146c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/d6a1396fb4fa/d5cs00146c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/8817afaf8fad/d5cs00146c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b966/12024683/4633a3d94c37/d5cs00146c-f5.jpg

相似文献

[1]
Cross-disciplinary perspectives on the potential for artificial intelligence across chemistry.

Chem Soc Rev. 2025-4-25

[2]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[3]
Advancements and Applications of Artificial Intelligence in Pharmaceutical Sciences: A Comprehensive Review.

Iran J Pharm Res. 2024-10-15

[4]
Materials discovery of ion-selective membranes using artificial intelligence.

Commun Chem. 2022-10-20

[5]
Artificial Intelligence for Autonomous Molecular Design: A Perspective.

Molecules. 2021-11-9

[6]
In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back.

Adv Mater. 2024-7

[7]
The synergistic interplay of artificial intelligence and digital twin in environmentally planning sustainable smart cities: A comprehensive systematic review.

Environ Sci Ecotechnol. 2024-5-17

[8]
Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future Perspectives.

J Med Chem. 2025-2-27

[9]
Exploring prospects, hurdles, and road ahead for generative artificial intelligence in orthopedic education and training.

BMC Med Educ. 2024-12-28

[10]
Integrating Model-Informed Drug Development With AI: A Synergistic Approach to Accelerating Pharmaceutical Innovation.

Clin Transl Sci. 2025-1

引用本文的文献

[1]
UMAP-based clustering split for rigorous evaluation of AI models for virtual screening on cancer cell lines.

J Cheminform. 2025-6-10

本文引用的文献

[1]
Token-Mol 1.0: tokenized drug design with large language models.

Nat Commun. 2025-5-13

[2]
Exploration of crystal chemical space using text-guided generative artificial intelligence.

Nat Commun. 2025-5-12

[3]
Unified differentiable learning of electric response.

Nat Commun. 2025-4-29

[4]
Fast and flexible long-range models for atomistic machine learning.

J Chem Phys. 2025-4-14

[5]
Development of an Automated Workflow for Screening the Assembly and Host-Guest Behavior of Metal-Organic Cages Towards Accelerated Discovery.

Angew Chem Int Ed Engl. 2025-6-10

[6]
Directly optimizing for synthesizability in generative molecular design using retrosynthesis models.

Chem Sci. 2025-3-21

[7]
A generative model for inorganic materials design.

Nature. 2025-3

[8]
The impact of library size and scale of testing on virtual screening.

Nat Chem Biol. 2025-1-3

[9]
A survey on multimodal large language models.

Natl Sci Rev. 2024-11-12

[10]
A fully automated platform for photoinitiated RAFT polymerization.

Digit Discov. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索