Chengdu Technological University, Chengdu, 610000, China.
Graduate School of Business Faculty, Malaysia SEGi University, 47810, Petaling Jaya, Malaysia.
Sci Rep. 2024 Jun 18;14(1):14006. doi: 10.1038/s41598-024-63934-8.
Smartphone sensors have gained considerable traction in Human Activity Recognition (HAR), drawing attention for their diverse applications. Accelerometer data monitoring holds promise in understanding students' physical activities, fostering healthier lifestyles. This technology tracks exercise routines, sedentary behavior, and overall fitness levels, potentially encouraging better habits, preempting health issues, and bolstering students' well-being. Traditionally, HAR involved analyzing signals linked to physical activities using handcrafted features. However, recent years have witnessed the integration of deep learning into HAR tasks, leveraging digital physiological signals from smartwatches and learning features automatically from raw sensory data. The Long Short-Term Memory (LSTM) network stands out as a potent algorithm for analyzing physiological signals, promising improved accuracy and scalability in automated signal analysis. In this article, we propose a feature analysis framework for recognizing student activity and monitoring health based on smartphone accelerometer data through an edge computing platform. Our objective is to boost HAR performance by accounting for the dynamic nature of human behavior. Nonetheless, the current LSTM network's presetting of hidden units and initial learning rate relies on prior knowledge, potentially leading to suboptimal states. To counter this, we employ Bidirectional LSTM (BiLSTM), enhancing sequence processing models. Furthermore, Bayesian optimization aids in fine-tuning the BiLSTM model architecture. Through fivefold cross-validation on training and testing datasets, our model showcases a classification accuracy of 97.5% on the tested dataset. Moreover, edge computing offers real-time processing, reduced latency, enhanced privacy, bandwidth efficiency, offline capabilities, energy efficiency, personalization, and scalability. Extensive experimental results validate that our proposed approach surpasses state-of-the-art methodologies in recognizing human activities and monitoring health based on smartphone accelerometer data.
智能手机传感器在人体活动识别(HAR)中得到了广泛的关注,其多样化的应用引起了人们的关注。加速度计数据监测有望帮助我们了解学生的体育活动,培养更健康的生活方式。这项技术可以跟踪锻炼习惯、久坐行为和整体健康水平,有可能鼓励更好的习惯,预防健康问题,并增强学生的幸福感。传统上,HAR 涉及使用手工制作的特征分析与身体活动相关的信号。然而,近年来,深度学习已被整合到 HAR 任务中,利用智能手表上的数字生理信号,并从原始传感器数据中自动学习特征。长短期记忆(LSTM)网络是分析生理信号的强大算法,有望在自动化信号分析中提高准确性和可扩展性。在本文中,我们提出了一种基于智能手机加速度计数据的学生活动识别和健康监测的特征分析框架,通过边缘计算平台实现。我们的目标是通过考虑人类行为的动态特性来提高 HAR 的性能。然而,当前 LSTM 网络的隐藏单元预设和初始学习率依赖于先验知识,可能导致次优状态。为了解决这个问题,我们采用了双向长短期记忆网络(BiLSTM),增强了序列处理模型。此外,贝叶斯优化有助于微调 BiLSTM 模型架构。通过在训练和测试数据集上进行五折交叉验证,我们的模型在测试数据集上的分类准确率达到了 97.5%。此外,边缘计算提供了实时处理、降低延迟、增强隐私、带宽效率、离线能力、节能、个性化和可扩展性。广泛的实验结果验证了我们提出的方法在基于智能手机加速度计数据的人体活动识别和健康监测方面优于最先进的方法。