Suppr超能文献

基于长短期记忆神经网络的低分辨率红外阵列传感器的无设备人体活动识别。

Device-Free Human Activity Recognition with Low-Resolution Infrared Array Sensor Using Long Short-Term Memory Neural Network.

机构信息

College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.

出版信息

Sensors (Basel). 2021 May 20;21(10):3551. doi: 10.3390/s21103551.

Abstract

Sensor-based human activity recognition (HAR) has attracted enormous interests due to its wide applications in the Internet of Things (IoT), smart homes and healthcare. In this paper, a low-resolution infrared array sensor-based HAR approach is proposed using the deep learning framework. The device-free sensing system leverages the infrared array sensor of 8×8 pixels to collect the infrared signals, which can ensure users' privacy and effectively reduce the deployment cost of the network. To reduce the influence of temperature variations, a combination of the J-filter noise reduction method and the Butterworth filter is performed to preprocess the infrared signals. Long short-term memory (LSTM), a representative recurrent neural network, is utilized to automatically extract characteristics from the infrared signal and build the recognition model. In addition, the real-time HAR interface is designed by embedding the LSTM model. Experimental results show that the typical daily activities can be classified with the recognition accuracy of 98.287%. The proposed approach yields a better result compared to the existing machine learning methods, and it provides a low-cost yet promising solution for privacy-preserving scenarios.

摘要

基于传感器的人体活动识别(HAR)由于在物联网(IoT)、智能家居和医疗保健中的广泛应用而引起了极大的关注。在本文中,提出了一种基于低分辨率红外阵列传感器的 HAR 方法,该方法使用深度学习框架。无设备感测系统利用 8x8 像素的红外阵列传感器来收集红外信号,这可以确保用户的隐私并有效地降低网络的部署成本。为了减少温度变化的影响,对红外信号进行了 J 滤波器降噪方法和巴特沃斯滤波器的组合预处理。长短期记忆(LSTM)是一种有代表性的递归神经网络,用于自动从红外信号中提取特征并构建识别模型。此外,通过嵌入 LSTM 模型设计了实时 HAR 接口。实验结果表明,典型的日常活动可以以 98.287%的识别准确率进行分类。与现有的机器学习方法相比,所提出的方法具有更好的结果,为隐私保护场景提供了一种低成本但很有前途的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/8161224/4bc8e205facf/sensors-21-03551-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验