Suppr超能文献

在生物乙醇生产过程中,运动发酵单胞菌应激反应的综合网络:从生理和分子反应到系统代谢工程的影响。

Comprehensive network of stress-induced responses in Zymomonas mobilis during bioethanol production: from physiological and molecular responses to the effects of system metabolic engineering.

机构信息

Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.

出版信息

Microb Cell Fact. 2024 Jun 18;23(1):180. doi: 10.1186/s12934-024-02459-1.

Abstract

Nowadays, biofuels, especially bioethanol, are becoming increasingly popular as an alternative to fossil fuels. Zymomonas mobilis is a desirable species for bioethanol production due to its unique characteristics, such as low biomass production and high-rate glucose metabolism. However, several factors can interfere with the fermentation process and hinder microbial activity, including lignocellulosic hydrolysate inhibitors, high temperatures, an osmotic environment, and high ethanol concentration. Overcoming these limitations is critical for effective bioethanol production. In this review, the stress response mechanisms of Z. mobilis are discussed in comparison to other ethanol-producing microbes. The mechanism of stress response is divided into physiological (changes in growth, metabolism, intracellular components, and cell membrane structures) and molecular (up and down-regulation of specific genes and elements of the regulatory system and their role in expression of specific proteins and control of metabolic fluxes) changes. Systemic metabolic engineering approaches, such as gene manipulation, overexpression, and silencing, are successful methods for building new metabolic pathways. Therefore, this review discusses systems metabolic engineering in conjunction with systems biology and synthetic biology as an important method for developing new strains with an effective response mechanism to fermentation stresses during bioethanol production. Overall, understanding the stress response mechanisms of Z. mobilis can lead to more efficient and effective bioethanol production.

摘要

如今,生物燃料,尤其是生物乙醇,作为化石燃料的替代品正变得越来越受欢迎。运动发酵单胞菌由于其独特的特性,如低生物质产量和高葡萄糖代谢率,是生物乙醇生产的理想物种。然而,有几个因素会干扰发酵过程并抑制微生物活性,包括木质纤维素水解物抑制剂、高温、渗透环境和高乙醇浓度。克服这些限制对于有效生产生物乙醇至关重要。在这篇综述中,比较了运动发酵单胞菌与其他生产乙醇的微生物的应激响应机制。应激响应机制分为生理(生长、代谢、细胞内成分和细胞膜结构的变化)和分子(特定基因和调控系统元件的上调和下调及其在特定蛋白质表达和代谢通量控制中的作用)变化。系统代谢工程方法,如基因操作、过表达和沉默,是构建新代谢途径的成功方法。因此,本文讨论了系统代谢工程与系统生物学和合成生物学相结合作为一种重要方法,用于开发具有有效响应机制的新菌株,以应对生物乙醇生产过程中的发酵应激。总的来说,了解运动发酵单胞菌的应激响应机制可以促进更高效和有效的生物乙醇生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f36c/11186258/a487dc5169bc/12934_2024_2459_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验