Suppr超能文献

源自ZIF-L@ZIF-67的共掺杂多孔碳/碳纳米管异质结构用于高效微波吸收

Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption.

作者信息

He Liming, Xu Hongda, Cui Yang, Qi Jian, Wang Xiaolong, Jin Quan

机构信息

The Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China.

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

出版信息

Molecules. 2024 May 21;29(11):2426. doi: 10.3390/molecules29112426.

Abstract

Carbon-based magnetic metal composites derived from metal-organic frameworks (MOFs) are promising materials for the preparation of broadband microwave absorbers. In this work, the leaf-like co-doped porous carbon/carbon nanotube heterostructure was obtained using ZIF-L@ZIF-67 as precursor. The number of carbon nanotubes can be controlled by varying the amount of ZIF-67, thus regulating the dielectric constant of the sample. An optimum reflection loss of -42.2 dB is attained when ZIF-67 is added at 2 mmol. An effective absorption bandwidth (EAB) of 4.8 GHz is achieved with a thickness of 2.2 mm and a filler weight of 12%. The excellent microwave absorption (MA) ability is generated from the mesopore structure, uniform heterogeneous interfaces, and high conduction loss. The work offers useful guidelines to devise and prepare such nanostructured materials for MA materials.

摘要

源自金属有机框架(MOF)的碳基磁性金属复合材料是制备宽带微波吸收剂的有前途的材料。在这项工作中,以ZIF-L@ZIF-67为前驱体获得了叶状共掺杂多孔碳/碳纳米管异质结构。碳纳米管的数量可以通过改变ZIF-67的量来控制,从而调节样品的介电常数。当加入2 mmol的ZIF-67时,可获得-42.2 dB的最佳反射损耗。在厚度为2.2 mm、填料重量为12%的情况下,有效吸收带宽(EAB)达到4.8 GHz。优异的微波吸收(MA)能力源于中孔结构、均匀的异质界面和高传导损耗。这项工作为设计和制备用于MA材料的此类纳米结构材料提供了有用的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/a43bcbb5e793/molecules-29-02426-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验