文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

源自ZIF-L@ZIF-67的共掺杂多孔碳/碳纳米管异质结构用于高效微波吸收

Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption.

作者信息

He Liming, Xu Hongda, Cui Yang, Qi Jian, Wang Xiaolong, Jin Quan

机构信息

The Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China.

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

出版信息

Molecules. 2024 May 21;29(11):2426. doi: 10.3390/molecules29112426.


DOI:10.3390/molecules29112426
PMID:38893301
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11173442/
Abstract

Carbon-based magnetic metal composites derived from metal-organic frameworks (MOFs) are promising materials for the preparation of broadband microwave absorbers. In this work, the leaf-like co-doped porous carbon/carbon nanotube heterostructure was obtained using ZIF-L@ZIF-67 as precursor. The number of carbon nanotubes can be controlled by varying the amount of ZIF-67, thus regulating the dielectric constant of the sample. An optimum reflection loss of -42.2 dB is attained when ZIF-67 is added at 2 mmol. An effective absorption bandwidth (EAB) of 4.8 GHz is achieved with a thickness of 2.2 mm and a filler weight of 12%. The excellent microwave absorption (MA) ability is generated from the mesopore structure, uniform heterogeneous interfaces, and high conduction loss. The work offers useful guidelines to devise and prepare such nanostructured materials for MA materials.

摘要

源自金属有机框架(MOF)的碳基磁性金属复合材料是制备宽带微波吸收剂的有前途的材料。在这项工作中,以ZIF-L@ZIF-67为前驱体获得了叶状共掺杂多孔碳/碳纳米管异质结构。碳纳米管的数量可以通过改变ZIF-67的量来控制,从而调节样品的介电常数。当加入2 mmol的ZIF-67时,可获得-42.2 dB的最佳反射损耗。在厚度为2.2 mm、填料重量为12%的情况下,有效吸收带宽(EAB)达到4.8 GHz。优异的微波吸收(MA)能力源于中孔结构、均匀的异质界面和高传导损耗。这项工作为设计和制备用于MA材料的此类纳米结构材料提供了有用的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/c5731048f8e5/molecules-29-02426-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/a43bcbb5e793/molecules-29-02426-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/9af226b10fdf/molecules-29-02426-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/705ad9f26f7d/molecules-29-02426-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/705bd05e0040/molecules-29-02426-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/8b854859f309/molecules-29-02426-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/4cc0e2099efd/molecules-29-02426-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/d5653d431bc3/molecules-29-02426-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/a4a44bb95cd1/molecules-29-02426-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/89e765441aec/molecules-29-02426-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/c5731048f8e5/molecules-29-02426-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/a43bcbb5e793/molecules-29-02426-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/9af226b10fdf/molecules-29-02426-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/705ad9f26f7d/molecules-29-02426-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/705bd05e0040/molecules-29-02426-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/8b854859f309/molecules-29-02426-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/4cc0e2099efd/molecules-29-02426-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/d5653d431bc3/molecules-29-02426-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/a4a44bb95cd1/molecules-29-02426-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/89e765441aec/molecules-29-02426-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/11173442/c5731048f8e5/molecules-29-02426-g009.jpg

相似文献

[1]
Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption.

Molecules. 2024-5-21

[2]
Facile Synthesis of Cobalt-Doped Porous Composites with Amorphous Carbon/Zn Shell for High-Performance Microwave Absorption.

Nanomaterials (Basel). 2020-2-14

[3]
Tailoring conductive network nanostructures of ZIF-derived cobalt-decorated N-doped graphene/carbon nanotubes for microwave absorption applications.

J Colloid Interface Sci. 2021-6

[4]
Hierarchical HCF@NC/Co Derived from Hollow Loofah Fiber Anchored with Metal-Organic Frameworks for Highly Efficient Microwave Absorption.

ACS Appl Mater Interfaces. 2022-1-12

[5]
Ultralight Three-Dimensional Hierarchical Cobalt Nanocrystals/N-Doped CNTs/Carbon Sponge Composites with a Hollow Skeleton toward Superior Microwave Absorption.

ACS Appl Mater Interfaces. 2019-9-19

[6]
Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers.

J Colloid Interface Sci. 2022-5

[7]
Poly(dimethylsilylene)diacetylene-Guided ZIF-Based Heterostructures for Full Ku-Band Electromagnetic Wave Absorption.

ACS Appl Mater Interfaces. 2019-5-15

[8]
Rational Construction of Hierarchically Porous Fe-Co/N-Doped Carbon/rGO Composites for Broadband Microwave Absorption.

Nanomicro Lett. 2019-9-13

[9]
Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption.

ACS Appl Mater Interfaces. 2022-3-2

[10]
Highly Cuboid-Shaped Heterobimetallic Metal-Organic Frameworks Derived from Porous Co/ZnO/C Microrods with Improved Electromagnetic Wave Absorption Capabilities.

ACS Appl Mater Interfaces. 2018-8-15

本文引用的文献

[1]
Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials.

Molecules. 2024-1-16

[2]
Fabrication and Investigation of the Microwave Absorption of Nonwovens Modified by Carbon Nanotubes and Graphene Flakes.

Molecules. 2023-9-3

[3]
One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption.

J Colloid Interface Sci. 2023-11-15

[4]
Two-Dimensional Metal Organic Framework derived Nitrogen-doped Graphene-like Carbon Nanomesh toward Efficient Electromagnetic Wave Absorption.

J Colloid Interface Sci. 2023-8

[5]
Metal-organic frameworks-derived layered double hydroxides: From controllable synthesis to various electrochemical energy storage/conversion applications.

Adv Colloid Interface Sci. 2023-3

[6]
FeO-multiwalled carbon nanotubes-bentonite as adsorbent for removal of methylene blue from aqueous solutions.

Chemosphere. 2023-3

[7]
In Situ Synthesis of C-N@NiFeO@MXene/Ni Nanocomposites for Efficient Electromagnetic Wave Absorption at an Ultralow Thickness Level.

Molecules. 2022-12-27

[8]
Polypyrrole/Schiff Base Composite as Electromagnetic Absorbing Material with High and Tunable Absorption Performance.

Molecules. 2022-9-20

[9]
Carbon-coated FeO core-shell super-paramagnetic nanoparticle-based ferrofluid for heat transfer applications.

Nanoscale Adv. 2021-2-8

[10]
Metal-organic framework-derived Co/CoO nanoparticles with tunable particle size for strong low-frequency microwave absorption in the S and C bands.

J Colloid Interface Sci. 2022-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索