Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
State Key Laboratory of Photon-Technology in Western China Energy, School of Physics, Northwest University, Xi'an 710127, China.
Molecules. 2022 Dec 27;28(1):233. doi: 10.3390/molecules28010233.
Recently, the development of composite materials composed of magnetic materials and MXene has attracted significant attention. However, the thickness and microwave absorption performance of the composite is still barely satisfactory. In this work, the C-N@NiFeO@MXene/Ni nanocomposites were successfully synthesized in situ by hydrothermal and calcination methods. Benefiting from the introduction of the carbon-nitrogen(C-N) network structure, the overall dielectric properties are improved effectively, consequently reducing the thickness of the composite while maintaining excellent absorption performance. As a result, the minimum reflection loss of C-N@NiFeO@MXene/Ni can reach -50.51 dB at 17.3 GHz at an ultralow thickness of 1.5 mm, with an effective absorption bandwidth of 4.95 GHz (13.02-18 GHz). This research provides a novel strategy for materials to maintain good absorption performance at an ultralow thickness level.
最近,由磁性材料和 MXene 组成的复合材料的发展引起了人们的极大关注。然而,复合材料的厚度和微波吸收性能仍不尽如人意。在这项工作中,通过水热和煅烧法成功地原位合成了 C-N@NiFeO@MXene/Ni 纳米复合材料。得益于碳氮(C-N)网络结构的引入,整体介电性能得到了有效改善,从而在保持优异吸收性能的同时降低了复合材料的厚度。因此,C-N@NiFeO@MXene/Ni 的最小反射损耗可在 1.5mm 的超薄厚度下在 17.3GHz 处达到-50.51dB,有效吸收带宽为 4.95GHz(13.02-18GHz)。该研究为材料在超低厚度水平下保持良好的吸收性能提供了一种新策略。
ACS Appl Mater Interfaces. 2019-7-17
J Colloid Interface Sci. 2022-2-15
Nanomaterials (Basel). 2025-8-13
Nanomicro Lett. 2024-12-30
Molecules. 2024-9-12
RSC Adv. 2018-1-10
J Colloid Interface Sci. 2022-1