文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载药介孔硅纳米颗粒通过调控 MDSCs 增强抗肿瘤免疫治疗。

Drug-Loaded Mesoporous Silica Nanoparticles Enhance Antitumor Immunotherapy by Regulating MDSCs.

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Function Materials and Devices, Soochow University, Suzhou 215123, China.

出版信息

Molecules. 2024 May 22;29(11):2436. doi: 10.3390/molecules29112436.


DOI:10.3390/molecules29112436
PMID:38893313
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11173511/
Abstract

Myeloid-derived suppressor cells (MDSCs) are recognized as major immune suppressor cells in the tumor microenvironment that may inhibit immune checkpoint blockade (ICB) therapy. Here, we developed a Stattic-loaded mesoporous silica nanoparticle (PEG-MSN-Stattic) delivery system to tumor sites to reduce the number of MDSCs in tumors. This approach is able to significantly deplete intratumoral MSDCs and thereby increase the infiltration of T lymphocytes in tumors to enhance ICB therapy. Our approach may provide a drug delivery strategy for regulating the tumor microenvironment and enhancing cancer immunotherapy efficacy.

摘要

髓系来源的抑制性细胞(MDSCs)被认为是肿瘤微环境中的主要免疫抑制细胞,可能会抑制免疫检查点阻断(ICB)治疗。在这里,我们开发了一种负载 Stattic 的介孔硅纳米粒子(PEG-MSN-Stattic)递药系统,将其递送至肿瘤部位,以减少肿瘤中的 MDSC 数量。该方法能够显著耗竭肿瘤内的 MDSC,从而增加肿瘤内 T 淋巴细胞的浸润,增强 ICB 治疗效果。我们的方法可能为调节肿瘤微环境和增强癌症免疫治疗效果提供了一种药物递送策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/0adf093db03d/molecules-29-02436-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/f3a60701da4c/molecules-29-02436-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/67a197404f86/molecules-29-02436-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/c97f1e7e2524/molecules-29-02436-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/e962aca727ac/molecules-29-02436-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/0adf093db03d/molecules-29-02436-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/f3a60701da4c/molecules-29-02436-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/67a197404f86/molecules-29-02436-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/c97f1e7e2524/molecules-29-02436-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/e962aca727ac/molecules-29-02436-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11173511/0adf093db03d/molecules-29-02436-g005.jpg

相似文献

[1]
Drug-Loaded Mesoporous Silica Nanoparticles Enhance Antitumor Immunotherapy by Regulating MDSCs.

Molecules. 2024-5-22

[2]
Intratumoral injection of mRNA encoding survivin in combination with STAT3 inhibitor stattic enhances antitumor effects.

Cancer Lett. 2024-8-28

[3]
Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.

Front Immunol. 2021

[4]
Biodegradable Hollow Mesoporous Silica Nanoparticles for Regulating Tumor Microenvironment and Enhancing Antitumor Efficiency.

Theranostics. 2017-7-23

[5]
Targeting myeloid-derived suppressive cells in the tumor microenvironment to enhance the efficacy of cancer immunotherapy.

Discov Med. 2020

[6]
Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment.

Front Immunol. 2021-2-4

[7]
Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells.

Eur J Pharm Biopharm. 2015-1

[8]
STING Activator c-di-GMP-Loaded Mesoporous Silica Nanoparticles Enhance Immunotherapy Against Breast Cancer.

ACS Appl Mater Interfaces. 2020-12-23

[9]
Blockade of myeloid-derived suppressor cell function by valproic acid enhanced anti-PD-L1 tumor immunotherapy.

Biochem Biophys Res Commun. 2019-11-28

[10]
Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy.

JCI Insight. 2019-4-4

引用本文的文献

[1]
Nano particle loaded EZH2 inhibitors: Increased efficiency and reduced toxicity for malignant solid tumors.

J Transl Int Med. 2025-5-8

[2]
Nanoimmunotherapy: the smart trooper for cancer therapy.

Explor Target Antitumor Ther. 2025-4-10

[3]
Adhesin Antibody-Grafted Mesoporous Silica Nanoparticles Suppress Immune Escape for Treatment of Fungal Systemic Infection.

Molecules. 2024-9-25

本文引用的文献

[1]
Recent applications of immunomodulatory biomaterials for disease immunotherapy.

Exploration (Beijing). 2022-5-23

[2]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[3]
Immune checkpoint blockade in melanoma: Advantages, shortcomings and emerging roles of the nanoparticles.

Int Immunopharmacol. 2022-12

[4]
Immunotherapy: Reshape the Tumor Immune Microenvironment.

Front Immunol. 2022

[5]
STAT3 inhibitor Napabucasin abrogates MDSC immunosuppressive capacity and prolongs survival of melanoma-bearing mice.

J Immunother Cancer. 2022-3

[6]
Suppressing MDSC Recruitment to the Tumor Microenvironment by Antagonizing CXCR2 to Enhance the Efficacy of Immunotherapy.

Cancers (Basel). 2021-12-15

[7]
A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment.

Cells. 2021-10-9

[8]
Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects.

Clin Med Insights Oncol. 2021-8-5

[9]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[10]
Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment.

Int Immunopharmacol. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索