Adelson Robert P, Garikipati Anurag, Zhou Yunfan, Ciobanu Madalina, Tawara Ken, Barnes Gina, Singh Navan Preet, Mao Qingqing, Das Ritankar
Montera, Inc. dba Forta, 548 Market St, PMB 89605, San Francisco, CA 94104-5401, USA.
Diagnostics (Basel). 2024 May 31;14(11):1152. doi: 10.3390/diagnostics14111152.
Type 2 diabetes (T2D) is a global health concern with increasing prevalence. Comorbid hypothyroidism (HT) exacerbates kidney, cardiac, neurological and other complications of T2D; these risks can be mitigated pharmacologically upon detecting HT. The current HT standard of care (SOC) screening in T2D is infrequent, delaying HT diagnosis and treatment. We present a first-to-date machine learning algorithm (MLA) clinical decision tool to classify patients as low vs. high risk for developing HT comorbid with T2D; the MLA was developed using readily available patient data from harmonized multinational datasets. The MLA was trained on data from NIH All of US (AoU) and UK Biobank (UKBB) (Combined dataset) and achieved a high negative predictive value (NPV) of 0.989 and an AUROC of 0.762 in the Combined dataset, exceeding AUROCs for the models trained on AoU or UKBB alone (0.666 and 0.622, respectively), indicating that increasing dataset diversity for MLA training improves performance. This high-NPV automated tool can supplement SOC screening and rule out T2D patients with low HT risk, allowing for the prioritization of lab-based testing for at-risk patients. Conversely, an MLA output that designates a patient to be at risk of developing HT allows for tailored clinical management and thereby promotes improved patient outcomes.
2型糖尿病(T2D)是一个日益受到全球关注的健康问题,其患病率不断上升。合并甲状腺功能减退症(HT)会加剧T2D的肾脏、心脏、神经及其他并发症;一旦检测到HT,可通过药物治疗减轻这些风险。目前T2D中HT的标准治疗(SOC)筛查并不频繁,导致HT的诊断和治疗延迟。我们提出了一种首创的机器学习算法(MLA)临床决策工具,用于将患者分类为合并T2D发生HT的低风险或高风险;该MLA是使用来自跨国协调数据集的现成患者数据开发的。MLA在来自美国国立卫生研究院(NIH)的美国全人群(AoU)和英国生物银行(UKBB)(合并数据集)的数据上进行训练,在合并数据集中实现了0.989的高阴性预测值(NPV)和0.762的曲线下面积(AUROC),超过了仅在AoU或UKBB上训练的模型的AUROC(分别为0.666和0.622),表明增加MLA训练的数据集多样性可提高性能。这种高NPV的自动化工具可以补充SOC筛查,并排除HT风险低的T2D患者,从而能够优先对高危患者进行基于实验室的检测。相反,MLA输出将患者指定为有发生HT的风险,这有助于进行个性化临床管理,从而改善患者预后。