Suppr超能文献

机器学习在自闭症谱系分类中的应用

Machine Learning Differentiation of Autism Spectrum Sub-Classifications.

机构信息

Montera, Inc dba Forta, 548 Market St, PMB 89605, San Francisco, CA, USA.

出版信息

J Autism Dev Disord. 2024 Nov;54(11):4216-4231. doi: 10.1007/s10803-023-06121-4. Epub 2023 Sep 26.

Abstract

PURPOSE

Disorders on the autism spectrum have characteristics that can manifest as difficulties with communication, executive functioning, daily living, and more. These challenges can be mitigated with early identification. However, diagnostic criteria has changed from DSM-IV to DSM-5, which can make diagnosing a disorder on the autism spectrum complex. We evaluated machine learning to classify individuals as having one of three disorders of the autism spectrum under DSM-IV, or as non-spectrum.

METHODS

We employed machine learning to analyze retrospective data from 38,560 individuals. Inputs encompassed clinical, demographic, and assessment data.

RESULTS

The algorithm achieved AUROCs ranging from 0.863 to 0.980. The model correctly classified 80.5% individuals; 12.6% of individuals from this dataset were misclassified with another disorder on the autism spectrum.

CONCLUSION

Machine learning can classify individuals as having a disorder on the autism spectrum or as non-spectrum using minimal data inputs.

摘要

目的

自闭症谱系障碍具有表现为沟通、执行功能、日常生活等方面困难的特征。这些挑战可以通过早期识别得到缓解。然而,诊断标准已从 DSM-IV 改为 DSM-5,这使得自闭症谱系障碍的诊断变得复杂。我们评估了机器学习,以根据 DSM-IV 将个体分类为具有三种自闭症谱系障碍之一,或非谱系。

方法

我们采用机器学习分析了来自 38560 名个体的回顾性数据。输入包括临床、人口统计学和评估数据。

结果

该算法的 AUROCs 范围为 0.863 至 0.980。该模型正确分类了 80.5%的个体;该数据集的 12.6%的个体被错误分类为另一种自闭症谱系障碍。

结论

机器学习可以使用最少的数据输入将个体分类为自闭症谱系障碍或非谱系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45cd/11461775/f862dbb644fb/10803_2023_6121_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验