Suppr超能文献

基于视觉的近悬浮熔池力平衡估计用于下垂和坍塌预测

Vision-Based Estimation of Force Balance of Near-Suspended Melt Pool for Drooping and Collapsing Prediction.

作者信息

Luo Longxi, Qian Enze, Lu Tao, Pan Jingren, Liu Minghao, Liu Changmeng, Guo Yueling, Bi Luzheng

机构信息

School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100080, China.

出版信息

Sensors (Basel). 2024 May 21;24(11):3270. doi: 10.3390/s24113270.

Abstract

Wire-arc additive manufacturing (WAAM) is favored by the industry for its high material utilization rate and low cost. However, wire-arc additive manufacturing of lattice structures faces problems with forming accuracy such as broken rod and surface morphology defects, which cannot meet the industrial demand. This article innovatively combines the melt pool stress theory with visual perception algorithms to visually study the force balance of the near-suspended melt pool to predict the state of the melt pool. First, the method for melt pool segmentation was studied. The results show that the optimized U-net achieved high accuracy in melt pool segmentation tasks, with accuracies of 98.18%, MIOU 96.64%, and Recall 98.34%. In addition, a method for estimating melt pool force balance and predicting normal, sagging, and collapsing states of the melt pool is proposed. By combining experimental testing with computer vision technology, an analysis of the force balance of the melt pool during the inclined rod forming process was conducted, showing a prediction rate as high as 90% for the testing set. By using this method, monitoring and predicting the state of the melt pool is achieved, preemptively avoiding issues of broken rods during the printing process. This approach can effectively assist in adjusting process parameters and improving welding quality. The application of this method will further promote the development of intelligent unmanned WAAM and provide some references for the development of artificial intelligence monitoring systems in the manufacturing field.

摘要

电弧增材制造(WAAM)因其高材料利用率和低成本而受到业界青睐。然而,晶格结构的电弧增材制造面临诸如断杆和表面形貌缺陷等成型精度问题,无法满足工业需求。本文创新性地将熔池应力理论与视觉感知算法相结合,以直观研究近悬浮熔池的力平衡,从而预测熔池状态。首先,研究了熔池分割方法。结果表明,优化后的U-net在熔池分割任务中实现了高精度,准确率为98.18%,平均交并比为96.64%,召回率为98.34%。此外,还提出了一种估计熔池力平衡并预测熔池正常、下垂和坍塌状态的方法。通过将实验测试与计算机视觉技术相结合,对倾斜杆成型过程中熔池的力平衡进行了分析,测试集的预测率高达90%。通过使用该方法,实现了对熔池状态的监测和预测,预先避免了打印过程中的断杆问题。这种方法可以有效地辅助调整工艺参数并提高焊接质量。该方法的应用将进一步推动智能无人WAAM的发展,并为制造领域人工智能监测系统的开发提供一些参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6ba/11174812/e8a5128fc710/sensors-24-03270-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验