文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多视图多向图学习的乳腺癌生存预测智能生物传感器

Smart Biosensor for Breast Cancer Survival Prediction Based on Multi-View Multi-Way Graph Learning.

机构信息

School of Computer and Control Engineering, Yantai University, Yantai 264005, China.

出版信息

Sensors (Basel). 2024 May 21;24(11):3289. doi: 10.3390/s24113289.


DOI:10.3390/s24113289
PMID:38894082
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11174864/
Abstract

Biosensors play a crucial role in detecting cancer signals by orchestrating a series of intricate biological and physical transduction processes. Among various cancers, breast cancer stands out due to its genetic underpinnings, which trigger uncontrolled cell proliferation, predominantly impacting women, and resulting in significant mortality rates. The utilization of biosensors in predicting survival time becomes paramount in formulating an optimal treatment strategy. However, conventional biosensors employing traditional machine learning methods encounter challenges in preprocessing features for the learning task. Despite the potential of deep learning techniques to automatically extract useful features, they often struggle to effectively leverage the intricate relationships between features and instances. To address this challenge, our study proposes a novel smart biosensor architecture that integrates a multi-view multi-way graph learning (MVMWGL) approach for predicting breast cancer survival time. This innovative approach enables the assimilation of insights from gene interactions and biosensor similarities. By leveraging real-world data, we conducted comprehensive evaluations, and our experimental results unequivocally demonstrate the superiority of the MVMWGL approach over existing methods.

摘要

生物传感器在检测癌症信号方面发挥着至关重要的作用,通过协调一系列复杂的生物和物理转换过程来实现这一目标。在各种癌症中,乳腺癌因其遗传基础而引人注目,这种遗传基础引发了不受控制的细胞增殖,主要影响女性,并导致高死亡率。生物传感器在预测生存时间方面的应用对于制定最佳治疗策略至关重要。然而,传统的生物传感器在学习任务的特征预处理方面采用传统的机器学习方法会遇到挑战。尽管深度学习技术具有自动提取有用特征的潜力,但它们往往难以有效地利用特征和实例之间的复杂关系。为了解决这一挑战,我们的研究提出了一种新颖的智能生物传感器架构,该架构集成了一种多视图多向图学习(MVMWGL)方法,用于预测乳腺癌的生存时间。这种创新方法能够吸收来自基因相互作用和生物传感器相似性的见解。通过利用真实世界的数据,我们进行了全面的评估,实验结果明确表明 MVMWGL 方法优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/335ebf894483/sensors-24-03289-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/e473042e86bc/sensors-24-03289-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/23019d63250b/sensors-24-03289-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/5ae646966ca0/sensors-24-03289-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/9678cad515d0/sensors-24-03289-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/13e1a6793fb4/sensors-24-03289-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/8ca6b08ac3b1/sensors-24-03289-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/c978934a7de0/sensors-24-03289-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/38cfd9281171/sensors-24-03289-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/13984ac268b0/sensors-24-03289-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/5f4e4fcdb802/sensors-24-03289-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/65bb01a8fe28/sensors-24-03289-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/08e728a690b8/sensors-24-03289-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/30d94d4d9966/sensors-24-03289-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/9ad086c03213/sensors-24-03289-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/335ebf894483/sensors-24-03289-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/e473042e86bc/sensors-24-03289-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/23019d63250b/sensors-24-03289-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/5ae646966ca0/sensors-24-03289-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/9678cad515d0/sensors-24-03289-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/13e1a6793fb4/sensors-24-03289-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/8ca6b08ac3b1/sensors-24-03289-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/c978934a7de0/sensors-24-03289-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/38cfd9281171/sensors-24-03289-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/13984ac268b0/sensors-24-03289-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/5f4e4fcdb802/sensors-24-03289-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/65bb01a8fe28/sensors-24-03289-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/08e728a690b8/sensors-24-03289-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/30d94d4d9966/sensors-24-03289-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/9ad086c03213/sensors-24-03289-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc72/11174864/335ebf894483/sensors-24-03289-g015.jpg

相似文献

[1]
Smart Biosensor for Breast Cancer Survival Prediction Based on Multi-View Multi-Way Graph Learning.

Sensors (Basel). 2024-5-21

[2]
MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction.

Int J Mol Sci. 2024-2-28

[3]
GraphEGFR: Multi-task and transfer learning based on molecular graph attention mechanism and fingerprints improving inhibitor bioactivity prediction for EGFR family proteins on data scarcity.

J Comput Chem. 2024-9-5

[4]
SAGL: A self-attention-based graph learning framework for predicting survival of colorectal cancer patients.

Comput Methods Programs Biomed. 2024-6

[5]
Advancing Biosensors with Machine Learning.

ACS Sens. 2020-11-25

[6]
Sampling clustering based on multi-view attribute structural relations.

PLoS One. 2024

[7]
Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors.

Sensors (Basel). 2021-2-10

[8]
Classifying breast cancer using multi-view graph neural network based on multi-omics data.

Front Genet. 2024-2-20

[9]
Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.

Methods. 2021-5

[10]
Encoding Genetic Circuits with DNA Barcodes Paves the Way for Machine Learning-Assisted Metabolite Biosensor Response Curve Profiling in Yeast.

ACS Synth Biol. 2022-2-18

本文引用的文献

[1]
Classifying breast cancer using multi-view graph neural network based on multi-omics data.

Front Genet. 2024-2-20

[2]
A multimodal graph neural network framework for cancer molecular subtype classification.

BMC Bioinformatics. 2024-1-15

[3]
SAGESDA: Multi-GraphSAGE networks for predicting SnoRNA-disease associations.

Curr Res Struct Biol. 2023-12-29

[4]
Patient Graph Deep Learning to Predict Breast Cancer Molecular Subtype.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[5]
: An Efficient Deep Learning Architecture to Predict Gene Expression from Breast Cancer Histopathology Images.

Cancers (Basel). 2023-4-30

[6]
Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning.

BMC Med Imaging. 2023-1-30

[7]
Joint learning sample similarity and correlation representation for cancer survival prediction.

BMC Bioinformatics. 2022-12-19

[8]
A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning.

Biosensors (Basel). 2022-9-1

[9]
Current and future burden of breast cancer: Global statistics for 2020 and 2040.

Breast. 2022-12

[10]
Transformers Improve Breast Cancer Diagnosis from Unregistered Multi-View Mammograms.

Diagnostics (Basel). 2022-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索