Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal.
LABBELS-Associate Laboratory, 4710-057 Braga, Portugal.
Sensors (Basel). 2024 May 22;24(11):3305. doi: 10.3390/s24113305.
Lower limb exoskeletons have the potential to mitigate work-related musculoskeletal disorders; however, they often lack user-oriented control strategies. Human-in-the-loop (HITL) controls adapt an exoskeleton's assistance in real time, to optimize the user-exoskeleton interaction. This study presents a HITL control for a knee exoskeleton using a CMA-ES algorithm to minimize the users' physical effort, a parameter innovatively evaluated using the interaction torque with the exoskeleton (a muscular effort indicator) and metabolic cost. This work innovates by estimating the user's metabolic cost within the HITL control through a machine-learning model. The regression model estimated the metabolic cost, in real time, with a root mean squared error of 0.66 W/kg and mean absolute percentage error of 26% ( = 5), making faster (10 s) and less noisy estimations than a respirometer (K5, Cosmed). The HITL reduced the user's metabolic cost by 7.3% and 5.9% compared to the zero-torque and no-device conditions, respectively, and reduced the interaction torque by 32.3% compared to a zero-torque control ( = 1). The developed HITL control surpassed a non-exoskeleton and zero-torque condition regarding the user's physical effort, even for a task such as slow walking. Furthermore, the user-specific control had a lower metabolic cost than the non-user-specific assistance. This proof-of-concept demonstrated the potential of HITL controls in assisted walking.
下肢外骨骼有减轻与工作相关的肌肉骨骼疾病的潜力;然而,它们通常缺乏面向用户的控制策略。人机交互(HITL)控制实时调整外骨骼的辅助,以优化用户-外骨骼的交互。本研究提出了一种使用 CMA-ES 算法的膝关节外骨骼 HITL 控制,以最小化用户的体力消耗,这是通过与外骨骼的交互扭矩(肌肉消耗指标)和代谢成本来创新评估的参数。这项工作通过机器学习模型在 HITL 控制内估计用户的代谢成本,这是一个创新点。回归模型实时估计代谢成本,均方根误差为 0.66 W/kg,平均绝对百分比误差为 26%( = 5),比呼吸仪(K5,Cosmed)更快(10 s)且噪声更小。与零扭矩和无设备条件相比,HITL 分别将用户的代谢成本降低了 7.3%和 5.9%,与零扭矩控制相比,交互扭矩降低了 32.3%( = 1)。与非外骨骼和零扭矩条件相比,开发的 HITL 控制在用户体力消耗方面表现更好,即使是在缓慢行走等任务中也是如此。此外,特定用户的控制比非特定用户的辅助具有更低的代谢成本。这个概念验证证明了 HITL 控制在辅助行走中的潜力。