Department of Computer Science and Technology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain.
Department of Ecology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain.
Sensors (Basel). 2024 May 25;24(11):3409. doi: 10.3390/s24113409.
Chicken behavior recognition is crucial for a number of reasons, including promoting animal welfare, ensuring the early detection of health issues, optimizing farm management practices, and contributing to more sustainable and ethical poultry farming. In this paper, we introduce a technique for recognizing chicken behavior on edge computing devices based on video sensing mosaicing. Our method combines video sensing mosaicing with deep learning to accurately identify specific chicken behaviors from videos. It attains remarkable accuracy, achieving 79.61% with MobileNetV2 for chickens demonstrating three types of behavior. These findings underscore the efficacy and promise of our approach in chicken behavior recognition on edge computing devices, making it adaptable for diverse applications. The ongoing exploration and identification of various behavioral patterns will contribute to a more comprehensive understanding of chicken behavior, enhancing the scope and accuracy of behavior analysis within diverse contexts.
鸡的行为识别有很多原因,包括促进动物福利、早期发现健康问题、优化农场管理实践,以及有助于更可持续和合乎道德的家禽养殖。在本文中,我们介绍了一种基于视频感应拼接的边缘计算设备上鸡行为识别技术。我们的方法将视频感应拼接与深度学习相结合,从视频中准确识别特定的鸡行为。使用 MobileNetV2 对表现出三种行为的鸡进行识别,其准确率达到 79.61%。这些发现突出了我们在边缘计算设备上鸡行为识别方法的有效性和潜力,使其适用于各种应用。对各种行为模式的持续探索和识别将有助于更全面地了解鸡的行为,增强在不同环境下行为分析的范围和准确性。