Li Guoming, Hui Xue, Lin Fei, Zhao Yang
Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, MS 39762, USA.
College of Energy and Intelligent Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450011, China.
Animals (Basel). 2020 Sep 28;10(10):1762. doi: 10.3390/ani10101762.
There is a lack of precision tools for automated poultry preening monitoring. The objective of this study was to develop poultry preening behavior detectors using mask R-CNN. Thirty 38-week brown hens were kept in an experimental pen. A surveillance system was installed above the pen to record images for developing the behavior detectors. The results show that the mask R-CNN had 87.2 ± 1.0% MIOU, 85.1 ± 2.8% precision, 88.1 ± 3.1% recall, 95.8 ± 1.0% specificity, 94.2 ± 0.6% accuracy, 86.5 ± 1.3% F1 score, 84.3 ± 2.8% average precision and 380.1 ± 13.6 ms·image processing speed. The six ResNets (ResNet18-ResNet1000) had disadvantages and advantages in different aspects of detection performance. Training parts of the complex network and transferring some pre-trained weights from the detectors pre-trained in other datasets can save training time but did not compromise detection performance and various datasets can result in different transfer learning efficiencies. Resizing and padding input images to different sizes did not affect detection performance of the detectors. The detectors performed similarly within 100-500 region proposals. Temporal and spatial preening behaviors of individual hens were characterized using the trained detector. In sum, the mask R-CNN preening behavior detector could be a useful tool to automatically identify preening behaviors of individual hens in group settings.
目前缺乏用于自动监测家禽理毛行为的精密工具。本研究的目的是使用Mask R-CNN开发家禽理毛行为探测器。30只38周龄的棕色母鸡被饲养在一个实验围栏中。在围栏上方安装了一个监控系统,用于记录图像以开发行为探测器。结果表明,Mask R-CNN的平均交并比(MIOU)为87.2±1.0%,精度为85.1±2.8%,召回率为88.1±3.1%,特异性为95.8±1.0%,准确率为94.2±0.6%,F1分数为86.5±1.3%,平均精度为84.3±2.8%,图像处理速度为380.1±13.6毫秒/图像。六种残差网络(ResNet18-ResNet1000)在检测性能的不同方面各有优缺点。训练复杂网络的部分并从在其他数据集上预训练的探测器转移一些预训练权重可以节省训练时间,但不会损害检测性能,并且不同的数据集会导致不同的迁移学习效率。将输入图像调整大小和填充到不同尺寸不会影响探测器的检测性能。探测器在100-500个区域建议范围内表现相似。使用训练好的探测器对个体母鸡的时空理毛行为进行了表征。总之,Mask R-CNN理毛行为探测器可能是在群体环境中自动识别个体母鸡理毛行为的有用工具。