Suppr超能文献

使用时间序列数据对冬季路面状况进行分类的多模态变压器模型。

Multimodal Transformer Model Using Time-Series Data to Classify Winter Road Surface Conditions.

作者信息

Moroto Yuya, Maeda Keisuke, Togo Ren, Ogawa Takahiro, Haseyama Miki

机构信息

Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Japan.

Data-Driven Interdisciplinary Research Emergence Department, Hokkaido University, N-13, W-10, Kita-ku, Sapporo 060-0813, Japan.

出版信息

Sensors (Basel). 2024 May 27;24(11):3440. doi: 10.3390/s24113440.

Abstract

This paper proposes a multimodal Transformer model that uses time-series data to detect and predict winter road surface conditions. For detecting or predicting road surface conditions, the previous approach focuses on the cooperative use of multiple modalities as inputs, e.g., images captured by fixed-point cameras (road surface images) and auxiliary data related to road surface conditions under simple modality integration. Although such an approach achieves performance improvement compared to the method using only images or auxiliary data, there is a demand for further consideration of the way to integrate heterogeneous modalities. The proposed method realizes a more effective modality integration using a cross-attention mechanism and time-series processing. Concretely, when integrating multiple modalities, feature compensation through mutual complementation between modalities is realized through a feature integration technique based on a cross-attention mechanism, and the representational ability of the integrated features is enhanced. In addition, by introducing time-series processing for the input data across several timesteps, it is possible to consider the temporal changes in the road surface conditions. Experiments are conducted for both detection and prediction tasks using data corresponding to the current winter condition and data corresponding to a few hours after the current winter condition, respectively. The experimental results verify the effectiveness of the proposed method for both tasks. In addition to the construction of the classification model for winter road surface conditions, we first attempt to visualize the classification results, especially the prediction results, through the image style transfer model as supplemental extended experiments on image generation at the end of the paper.

摘要

本文提出了一种多模态Transformer模型,该模型使用时间序列数据来检测和预测冬季路面状况。对于检测或预测路面状况,先前的方法侧重于将多种模态作为输入进行协同使用,例如由定点相机捕获的图像(路面图像)以及在简单模态整合下与路面状况相关的辅助数据。尽管与仅使用图像或辅助数据的方法相比,这种方法实现了性能提升,但仍需要进一步考虑整合异构模态的方式。所提出的方法使用交叉注意力机制和时间序列处理实现了更有效的模态整合。具体而言,在整合多种模态时,通过基于交叉注意力机制的特征整合技术实现模态间相互补充的特征补偿,并增强整合特征的表征能力。此外,通过对跨多个时间步的输入数据引入时间序列处理,可以考虑路面状况的时间变化。分别使用对应当前冬季状况的数据和对应当前冬季状况几小时后的数据对检测和预测任务进行了实验。实验结果验证了所提出方法对这两项任务的有效性。除了构建冬季路面状况分类模型外,我们首先尝试通过图像风格迁移模型将分类结果(尤其是预测结果)可视化,作为本文末尾关于图像生成的补充扩展实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a211/11174985/2fe92bd0a809/sensors-24-03440-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验