Suppr超能文献

一种用于融合图像和元数据以进行皮肤病分类的多模态变压器。

A multimodal transformer to fuse images and metadata for skin disease classification.

作者信息

Cai Gan, Zhu Yu, Wu Yue, Jiang Xiaoben, Ye Jiongyao, Yang Dawei

机构信息

School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237 China.

Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China.

出版信息

Vis Comput. 2022 May 5:1-13. doi: 10.1007/s00371-022-02492-4.

Abstract

Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model's effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis.

摘要

皮肤病病例的患病率正在上升,而皮肤病的诊断在临床上始终是一项具有挑战性的任务。利用深度学习来诊断皮肤病有助于应对这些挑战。在本研究中,提出了一种用于皮肤病分类的新型神经网络。由于该研究的数据集由皮肤病图像和临床元数据组成,我们提出了一种新型多模态Transformer,它由用于图像和元数据的两个编码器以及一个用于融合多模态信息的解码器组成。在所提出的网络中,使用合适的视觉Transformer(ViT)模型作为主干来提取图像深度特征。至于元数据,它们被视为标签,并设计了一种新的软标签编码器(SLE)来嵌入它们。此外,在解码器部分,提出了一种新型互注意力(MA)块,以更好地融合图像特征和元数据特征。为了评估模型的有效性,在私人皮肤病数据集和基准数据集ISIC 2018上进行了广泛的实验。与现有方法相比,所提出的模型表现出更好的性能,代表了皮肤病诊断方面的一项进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21a8/9070977/38f5c783bbcf/371_2022_2492_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验