Suppr超能文献

RSDNet:一种新型多尺度钢轨表面缺陷检测模型。

RSDNet: A New Multiscale Rail Surface Defect Detection Model.

作者信息

Du Jingyi, Zhang Ruibo, Gao Rui, Nan Lei, Bao Yifan

机构信息

College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.

出版信息

Sensors (Basel). 2024 Jun 1;24(11):3579. doi: 10.3390/s24113579.

Abstract

The rapid and accurate identification of rail surface defects is critical to the maintenance and operational safety of the rail. For the problems of large-scale differences in rail surface defects and many small-scale defects, this paper proposes a rail surface defect detection algorithm, RSDNet (Rail Surface Defect Detection Net), with YOLOv8n as the baseline model. Firstly, the CDConv (Cascade Dilated Convolution) module is designed to realize multi-scale convolution by cascading the cavity convolution with different cavity rates. The CDConv is embedded into the backbone network to gather earlier defect local characteristics and contextual data. Secondly, the feature fusion method of Head is optimized based on BiFPN (Bi-directional Feature Pyramids Network) to fuse more layers of feature information and improve the utilization of original information. Finally, the EMA (Efficient Multi-Scale Attention) attention module is introduced to enhance the network's attention to defect information. The experiments are conducted on the RSDDs dataset, and the experimental results show that the RSDNet algorithm achieves a mAP of 95.4% for rail surface defect detection, which is 4.6% higher than the original YOLOv8n. This study provides an effective technical means for rail surface defect detection that has certain engineering applications.

摘要

快速准确地识别钢轨表面缺陷对于钢轨的维护和运行安全至关重要。针对钢轨表面缺陷存在大规模差异以及众多小规模缺陷的问题,本文提出了一种以YOLOv8n为基础模型的钢轨表面缺陷检测算法RSDNet(Rail Surface Defect Detection Net)。首先,设计了CDConv(级联空洞卷积)模块,通过级联不同空洞率的空洞卷积来实现多尺度卷积。将CDConv嵌入到骨干网络中,以收集早期缺陷局部特征和上下文数据。其次,基于BiFPN(双向特征金字塔网络)对Head的特征融合方法进行优化,以融合更多层的特征信息并提高原始信息的利用率。最后,引入EMA(高效多尺度注意力)注意力模块,增强网络对缺陷信息的关注。在RSDDs数据集上进行了实验,实验结果表明,RSDNet算法在钢轨表面缺陷检测中实现了95.4%的平均精度均值(mAP),比原始的YOLOv8n高4.6%。本研究为钢轨表面缺陷检测提供了一种有效的技术手段,具有一定的工程应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/732c/11175254/0cc0d525a450/sensors-24-03579-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验