Zou Yongqiang, Fan Yugang
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.
Sensors (Basel). 2024 Mar 5;24(5):1674. doi: 10.3390/s24051674.
Steel surfaces often display intricate texture patterns that can resemble defects, posing a challenge in accurately identifying actual defects. Therefore, it is crucial to develop a highly robust defect detection model. This study proposes a defect detection method for steel infrared images based on a Regularized YOLO framework. Firstly, the Coordinate Attention (CA) is embedded within the C2F framework, utilizing a lightweight attention module to enhance the feature extraction capability of the backbone network. Secondly, the neck part design incorporates the Bi-directional Feature Pyramid Network (BiFPN) for weighted fusion of multi-scale feature maps. This creates a model called BiFPN-Concat, which enhances feature fusion capability. Finally, the loss function of the model is regularized to improve the generalization performance of the model. The experimental results indicate that the model has only 3.03 M parameters, yet achieves a mAP@0.5 of 80.77% on the NEU-DET dataset and 99.38% on the ECTI dataset. This represents an improvement of 2.3% and 1.6% over the baseline model, respectively. This method is well-suited for industrial detection applications involving non-destructive testing of steel using infrared imagery.
钢材表面常常呈现出复杂的纹理图案,这些图案可能类似缺陷,给准确识别实际缺陷带来挑战。因此,开发一个高度鲁棒的缺陷检测模型至关重要。本研究提出了一种基于正则化YOLO框架的钢材红外图像缺陷检测方法。首先,将坐标注意力(CA)嵌入到C2F框架中,利用轻量级注意力模块增强主干网络的特征提取能力。其次,颈部设计采用双向特征金字塔网络(BiFPN)对多尺度特征图进行加权融合。这创建了一个名为BiFPN-Concat的模型,增强了特征融合能力。最后,对模型的损失函数进行正则化,以提高模型的泛化性能。实验结果表明,该模型仅有3.03M个参数,但在NEU-DET数据集上mAP@0.5达到80.77%,在ECTI数据集上达到99.38%。这分别比基线模型提高了2.3%和1.6%。该方法非常适合使用红外图像对钢材进行无损检测的工业检测应用。