Department of Computer Science, Faculty of Engineering Sciences, University College London, London, UK.
Department of Paediatrics, College of Medicine University of Ibadan, University College Hospital, Ibadan, Nigeria.
Br J Haematol. 2024 Aug;205(2):699-710. doi: 10.1111/bjh.19599. Epub 2024 Jun 18.
In sub-Saharan Africa, acute-onset severe malaria anaemia (SMA) is a critical challenge, particularly affecting children under five. The acute drop in haematocrit in SMA is thought to be driven by an increased phagocytotic pathological process in the spleen, leading to the presence of distinct red blood cells (RBCs) with altered morphological characteristics. We hypothesized that these RBCs could be detected systematically and at scale in peripheral blood films (PBFs) by harnessing the capabilities of deep learning models. Assessment of PBFs by a microscopist does not scale for this task and is subject to variability. Here we introduce a deep learning model, leveraging a weakly supervised Multiple Instance Learning framework, to Identify SMA (MILISMA) through the presence of morphologically changed RBCs. MILISMA achieved a classification accuracy of 83% (receiver operating characteristic area under the curve [AUC] of 87%; precision-recall AUC of 76%). More importantly, MILISMA's capabilities extend to identifying statistically significant morphological distinctions (p < 0.01) in RBCs descriptors. Our findings are enriched by visual analyses, which underscore the unique morphological features of SMA-affected RBCs when compared to non-SMA cells. This model aided detection and characterization of RBC alterations could enhance the understanding of SMA's pathology and refine SMA diagnostic and prognostic evaluation processes at scale.
在撒哈拉以南非洲,急性重症疟疾贫血症(SMA)是一个严峻的挑战,尤其影响五岁以下儿童。SMA 患者的血细胞比容急剧下降,据认为这是由脾脏中吞噬作用病理性过程增加引起的,导致出现具有明显形态特征改变的红细胞(RBC)。我们假设这些 RBC 可以通过利用深度学习模型的功能在外周血涂片(PBF)中系统地、大规模地检测到。显微镜评估 PBF 不适合这项任务,且易受变异性影响。在这里,我们引入了一个深度学习模型,利用弱监督的多实例学习框架,通过存在形态改变的 RBC 来识别 SMA(MILISMA)。MILISMA 的分类准确率为 83%(接收者操作特征曲线下的 AUC 为 87%;精确召回 AUC 为 76%)。更重要的是,MILISMA 的功能还扩展到识别 RBC 描述符中具有统计学意义的形态差异(p<0.01)。我们的发现通过可视化分析得到了丰富,这些分析强调了 SMA 影响的 RBC 与非 SMA 细胞相比具有独特的形态特征。这种模型辅助检测和表征 RBC 改变可以增强对 SMA 病理的理解,并在大规模上改进 SMA 诊断和预后评估过程。