Suppr超能文献

用于分类感染 spp. 的红细胞的计算机视觉模型。应用于使用光学显微镜的疟疾诊断。

Computer Viewing Model for Classification of Erythrocytes Infected with spp. Applied to Malaria Diagnosis Using Optical Microscope.

作者信息

Rojas Eduardo, Cartas-Espinel Irene, Álvarez Priscila, Moris Matías, Salazar Manuel, Boguen Rodrigo, Letelier Pablo, San Martín Lucia, San Martín Valeria, Morales Camilo, Guzmán Neftalí

机构信息

Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile.

Laboratorio SouthGenomics SpA, Temuco 4780000, Chile.

出版信息

Medicina (Kaunas). 2025 May 21;61(5):940. doi: 10.3390/medicina61050940.

Abstract

Malaria is a disease that can result in a variety of complications. Diagnosis is carried out by an optical microscope and depends on operator experience. The use of artificial intelligence to identify morphological patterns in erythrocytes would improve our diagnostic capability. The object of this study was therefore to establish computer viewing models able to classify blood cells infected with spp. to support malaria diagnosis by optical microscope. A total of 27,558 images of human blood sample extensions were obtained from a public data bank for analysis; half were of parasite-infected red cells ( = 13,779), and the other half were of uninfected erythrocytes ( = 13,779). Six models (five machine learning algorithms and one pre-trained for a convolutional neural network) were assessed, and the performance of each was measured using metrics like accuracy (A), precision (P), recall, F1 score, and area under the curve (AUC). The model with the best performance was VGG-19, with an AUC of 98%, accuracy of 93%, precision of 92%, recall of 94%, and F1 score of 93%. Based on the results, we propose a convolutional neural network model (VGG-19) for malaria diagnosis that can be applied in low-complexity laboratories thanks to its ease of implementation and high predictive performance.

摘要

疟疾是一种可导致多种并发症的疾病。诊断通过光学显微镜进行,且取决于操作人员的经验。利用人工智能识别红细胞中的形态模式将提高我们的诊断能力。因此,本研究的目的是建立能够对感染疟原虫属的血细胞进行分类的计算机观察模型,以支持光学显微镜下的疟疾诊断。从一个公共数据库中获取了总共27558张人类血液样本涂片图像进行分析;其中一半是寄生虫感染的红细胞图像(=13779张),另一半是未感染的红细胞图像(=13779张)。评估了六个模型(五种机器学习算法和一个卷积神经网络预训练模型),并使用准确率(A)、精确率(P)、召回率、F1分数和曲线下面积(AUC)等指标来衡量每个模型的性能。性能最佳的模型是VGG-19,其AUC为98%,准确率为93%,精确率为92%,召回率为94%,F1分数为93%。基于这些结果,我们提出了一种用于疟疾诊断的卷积神经网络模型(VGG-19),由于其易于实施和高预测性能,可应用于低复杂度实验室。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验