文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

患者对人工智能驱动的精神分裂症复发预测的看法:了解自我护理和治疗中的问题与机遇

Patient Perspectives on AI-Driven Predictions of Schizophrenia Relapses: Understanding Concerns and Opportunities for Self-Care and Treatment.

作者信息

Yoo Dong Whi, Woo Hayoung, Nguyen Viet Cuong, Birnbaum Michael L, Kruzan Kaylee Payne, Kim Jennifer G, Abowd Gregory D, De Choudhury Munmun

机构信息

Kent State University, Kent, Ohio, USA.

Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

Proc SIGCHI Conf Hum Factor Comput Syst. 2024 May;2024. doi: 10.1145/3613904.3642369. Epub 2024 May 11.


DOI:10.1145/3613904.3642369
PMID:38894725
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11184595/
Abstract

Early detection and intervention for relapse is important in the treatment of schizophrenia spectrum disorders. Researchers have developed AI models to predict relapse from patient-contributed data like social media. However, these models face challenges, including misalignment with practice and ethical issues related to transparency, accountability, and potential harm. Furthermore, how patients who have recovered from schizophrenia view these AI models has been underexplored. To address this gap, we first conducted semi-structured interviews with 28 patients and reflexive thematic analysis, which revealed a disconnect between AI predictions and patient experience, and the importance of the social aspect of relapse detection. In response, we developed a prototype that used patients' Facebook data to predict relapse. Feedback from seven patients highlighted the potential for AI to foster collaboration between patients and their support systems, and to encourage self-reflection. Our work provides insights into human-AI interaction and suggests ways to empower people with schizophrenia.

摘要

早期发现复发并进行干预对于精神分裂症谱系障碍的治疗至关重要。研究人员已开发出人工智能模型,可根据社交媒体等患者提供的数据预测复发情况。然而,这些模型面临挑战,包括与实践不一致以及与透明度、问责制和潜在危害相关的伦理问题。此外,精神分裂症康复患者如何看待这些人工智能模型尚未得到充分研究。为填补这一空白,我们首先对28名患者进行了半结构化访谈,并进行了反思性主题分析,结果揭示了人工智能预测与患者体验之间的脱节,以及复发检测中社会层面的重要性。作为回应,我们开发了一个利用患者脸书数据预测复发的原型。七名患者的反馈突出了人工智能促进患者与其支持系统之间合作以及鼓励自我反思的潜力。我们的工作为人类与人工智能的互动提供了见解,并提出了增强精神分裂症患者能力的方法。

相似文献

[1]
Patient Perspectives on AI-Driven Predictions of Schizophrenia Relapses: Understanding Concerns and Opportunities for Self-Care and Treatment.

Proc SIGCHI Conf Hum Factor Comput Syst. 2024-5

[2]
Leading with AI in critical care nursing: challenges, opportunities, and the human factor.

BMC Nurs. 2024-10-14

[3]
Your Robot Therapist Will See You Now: Ethical Implications of Embodied Artificial Intelligence in Psychiatry, Psychology, and Psychotherapy.

J Med Internet Res. 2019-5-9

[4]
Toward Fairness, Accountability, Transparency, and Ethics in AI for Social Media and Health Care: Scoping Review.

JMIR Med Inform. 2024-4-3

[5]
Benefit-Risk Assessment of ChatGPT Applications in the Field of Diabetes and Metabolic Illnesses: A Qualitative Study.

Clin Med Insights Endocrinol Diabetes. 2024-3-15

[6]
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.

Cureus. 2023-8-10

[7]
Clinician Perspectives on Using Computational Mental Health Insights From Patients' Social Media Activities: Design and Qualitative Evaluation of a Prototype.

JMIR Ment Health. 2021-11-16

[8]
Navigating the ethical landscape of artificial intelligence in radiography: a cross-sectional study of radiographers' perspectives.

BMC Med Ethics. 2024-5-11

[9]
Ethical use of artificial intelligence to prevent sudden cardiac death: an interview study of patient perspectives.

BMC Med Ethics. 2024-4-4

[10]
Patients' Perceptions Toward Human-Artificial Intelligence Interaction in Health Care: Experimental Study.

J Med Internet Res. 2021-11-25

本文引用的文献

[1]
The Perceived Utility of Smartphone and Wearable Sensor Data in Digital Self-tracking Technologies for Mental Health.

Proc SIGCHI Conf Hum Factor Comput Syst. 2023-4

[2]
Cross-Platform Detection of Psychiatric Hospitalization via Social Media Data: Comparison Study.

JMIR Ment Health. 2022-12-30

[3]
From promise to practice: towards the realisation of AI-informed mental health care.

Lancet Digit Health. 2022-11

[4]
Artificial Intelligence and Inclusion: Formerly Gang-Involved Youth as Domain Experts for Analyzing Unstructured Twitter Data.

Soc Sci Comput Rev. 2020-2

[5]
Barriers to Online Dementia Information and Mitigation.

Proc SIGCHI Conf Hum Factor Comput Syst. 2022-4

[6]
"Can I Not Be Suicidal on a Sunday?": Understanding Technology-Mediated Pathways to Mental Health Support.

Proc SIGCHI Conf Hum Factor Comput Syst. 2021-5

[7]
Predicting Psychotic Relapse in Schizophrenia With Mobile Sensor Data: Routine Cluster Analysis.

JMIR Mhealth Uhealth. 2022-4-11

[8]
Clinician Perspectives on Using Computational Mental Health Insights From Patients' Social Media Activities: Design and Qualitative Evaluation of a Prototype.

JMIR Ment Health. 2021-11-16

[9]
Studying the Formation of an Older Adult-Led Makerspace.

Proc SIGCHI Conf Hum Factor Comput Syst. 2021

[10]
Dignity, Autonomy, and Style of Company: Dimensions Older Adults Consider for Robot Companions.

Proc ACM Hum Comput Interact. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索