Childers Matthew Carter, Geeves Michael A, Regnier Michael
bioRxiv. 2024 Jun 9:2024.06.06.597809. doi: 10.1101/2024.06.06.597809.
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are unable to perform motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state via missense mutations can pathologically disrupt the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analogue called 2'-deoxy-ATP (dATP) is a potent myosin activator which destabilizes the IHM. Here we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations with IHM containing ADP.Pi in both nucleotide binding pockets revealed residual dynamics in an otherwise 'inactive' and 'sequestered' state of a motor protein. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that modify the protein-protein interface that stabilizes the sequestered state, and changes to this interface were accompanied by allosteric changes in remote regions of the protein complex. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
横纹肌的收缩由嵌入肌节粗肌丝中的循环肌球蛋白运动蛋白驱动。除了与肌动蛋白进行横桥循环外,这些肌球蛋白蛋白还可以进入一种无活性的、被隔离的状态,在这种状态下,球状S1头部沿着粗肌丝表面休息,无法进行运动活动。在结构上,这种状态被称为相互作用头部基序(IHM),是调节肌肉收缩性和能量消耗的肌球蛋白的关键构象状态。通过错义突变对隔离状态进行结构扰动可在病理上破坏肌肉组织的机械性能。因此,IHM状态已成为治疗干预的靶点。一种名为2'-脱氧-ATP(dATP)的ATP类似物是一种有效的肌球蛋白激活剂,它会破坏IHM的稳定性。在这里,我们使用分子动力学模拟来研究dATP修饰处于隔离状态的肌球蛋白的结构和动力学的分子机制。在两个核苷酸结合口袋中都含有ADP·Pi的IHM模拟显示,在一种原本“无活性”和“隔离”的运动蛋白状态中存在残余动力学。用dADP·Pi取代ADP·Pi引发了一系列结构变化,这些变化改变了稳定隔离状态的蛋白质-蛋白质界面,并且这种界面的变化伴随着蛋白质复合物远端区域的变构变化。对这些动力学的比较分析预测了可能影响IHM稳定性的新结构位点。