Department of Bioengineering, University of California San Diego, La Jolla, CA 92093.
Department of Computational Physiology, Simula Research Laboratory, Oslo 0164, Norway.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2322077121. doi: 10.1073/pnas.2322077121. Epub 2024 Aug 22.
2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.
2'-脱氧腺苷三磷酸(dATP)通过增加肌球蛋白横桥循环和 Ca[Formula: see text]瞬变衰减的速率来改善心脏功能。然而,这些作用的机制以及当 dATP 仅占总 ATP 池的一小部分时,如何实现对 dATP 的治疗反应仍知之甚少。在这里,我们使用多尺度计算建模方法来分析 dATP 改善心室功能的机制。我们整合了肌球蛋白预功构象的原子模拟、肌节力学的细丝尺度马尔可夫状态建模、心肌细胞 Ca[Formula: see text]动力学和收缩的细胞尺度分析、双心室力学的器官尺度建模以及循环动力学的系统水平建模。分子和布朗动力学模拟表明,dATP 将肌球蛋白与肌动蛋白的结合速率提高了 1.9 倍。马尔可夫状态模型预测,dATP 增加了可用于横桥循环的肌球蛋白头部池,由于机械敏感性和最近邻协同作用,在低 dATP 分数下,稳态力发展增加了 1.3 倍。这被发现是少量 dATP 可以在肌丝到器官尺度上改善收缩功能的主要机制。与更快的心肌细胞 Ca[Formula: see text]处理相结合,这导致心室收缩力得到改善,尤其是在衰竭心脏模型中,dATP 将射血分数提高了 16%,心脏收缩的能量效率提高了 1%。这项工作代表了从小分子肌球蛋白调节剂的单分子到器官系统生物物理学的完整多尺度模型分析,并阐明了 dATP 的分子机制如何改善射血分数降低的心力衰竭中的心血管功能。