Sidor Lynn M, Beaulieu Michelle M, Rasskazov Ilia, Acarturk B Cansu, Ren Jie, Kamoen Lycka, Vitali María Vázquez, Carney P Scott, Schmidt Greg R, Srubar Iii Wil V, Abbondanzieri Elio A, Meyer Anne S
Department of Biology, University of Rochester; Rochester, New York, USA.
Department of Physics and Astronomy, University of Rochester; Rochester, New York, USA.
bioRxiv. 2024 Jun 4:2024.06.03.597164. doi: 10.1101/2024.06.03.597164.
Photonic devices are cutting-edge optical materials that produce narrow, intense beams of light, but their synthesis typically requires toxic, complex methodology. Here we employ a synthetic biology approach to produce environmentally-friendly, living microlenses with tunable structural properties. We engineered bacteria to display the silica biomineralization enzyme silicatein from aquatic sea sponges. Our silicatein-expressing bacteria can self-assemble a shell of polysilicate "bioglass" around themselves. Remarkably, the polysilicate-encapsulated bacteria can focus light into intense nanojets that are nearly an order of magnitude brighter than unmodified bacteria. Polysilicate-encapsulated bacteria are metabolically active for up to four months, potentially allowing them to sense and respond to stimuli over time. Our data demonstrate that engineered bacterial particles have the potential to revolutionize the development of multiple optical and photonic technologies.
光子器件是一种前沿光学材料,可产生狭窄、强烈的光束,但其合成通常需要有毒且复杂的方法。在此,我们采用合成生物学方法来制造具有可调结构特性的环保型活体微透镜。我们对细菌进行工程改造,使其表达来自海洋海绵的二氧化硅生物矿化酶硅酸酶。我们的表达硅酸酶的细菌能够在自身周围自组装一层聚硅酸盐“生物玻璃”外壳。值得注意的是,被聚硅酸盐包裹的细菌能够将光聚焦成强烈的纳米射流,其亮度比未修饰的细菌高出近一个数量级。被聚硅酸盐包裹的细菌在长达四个月的时间内都具有代谢活性,这可能使它们能够随时间感知并响应刺激。我们的数据表明,经过工程改造的细菌颗粒有可能彻底改变多种光学和光子技术的发展。