Sidor Lynn M, Beaulieu Michelle M, Rasskazov Ilia, Acarturk B Cansu, Ren Jie, Jenen Emerson, Kamoen Lycka, Vitali María Vázquez, Carney P Scott, Schmidt Greg R, Srubar Wil V, Abbondanzieri Elio A, Meyer Anne S
Department of Biology, University of Rochester, Rochester, NY 14627.
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2409335121. doi: 10.1073/pnas.2409335121. Epub 2024 Dec 10.
Cutting-edge photonic devices frequently rely on microparticle components to focus and manipulate light. Conventional methods used to produce these microparticle components frequently offer limited control of their structural properties or require low-throughput nanofabrication of more complex structures. Here, we employ a synthetic biology approach to produce environmentally friendly, living microlenses with tunable structural properties. We engineered bacteria to display the silica biomineralization enzyme silicatein from aquatic sea sponges. Our silicatein-expressing bacteria can self-assemble a shell of polysilicate "bioglass" around themselves. Remarkably, the polysilicate-encapsulated bacteria can focus light into intense nanojets that are nearly an order of magnitude brighter than unmodified bacteria. Polysilicate-encapsulated bacteria are metabolically active for up to 4 mo, potentially allowing them to sense and respond to stimuli over time. Our data demonstrate that synthetic biology offers a pathway for producing inexpensive and durable photonic components that exhibit unique optical properties.
前沿光子器件经常依赖微粒组件来聚焦和操纵光。用于制造这些微粒组件的传统方法通常对其结构特性的控制有限,或者需要对更复杂的结构进行低通量纳米制造。在这里,我们采用合成生物学方法来生产具有可调结构特性的环保型活微透镜。我们对细菌进行工程改造,使其表达来自水生海绵的二氧化硅生物矿化酶硅酸酶。我们表达硅酸酶的细菌可以在自身周围自组装一层聚硅酸盐“生物玻璃”外壳。值得注意的是,被聚硅酸盐包裹的细菌可以将光聚焦成强烈的纳米射流,其亮度比未修饰的细菌高出近一个数量级。被聚硅酸盐包裹的细菌在长达4个月的时间里都具有代谢活性,这可能使它们能够随着时间的推移感知并对刺激做出反应。我们的数据表明,合成生物学为生产具有独特光学特性的廉价且耐用的光子组件提供了一条途径。