Bredvik Kirsten, Liu Charmaine, Ryan Timothy A
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA, 10065.
Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA, 10065.
bioRxiv. 2024 Jun 9:2024.06.08.598077. doi: 10.1101/2024.06.08.598077.
The ketogenic diet is an effective treatment for drug-resistant epilepsy, but the therapeutic mechanisms are poorly understood. Although ketones are able to fuel the brain, it is not known whether ketones are directly metabolized by neurons on a time scale sufficiently rapid to fuel the bioenergetic demands of sustained synaptic transmission. Here, we show that nerve terminals can use the ketone β-hydroxybutyrate in a cell- autonomous fashion to support neurotransmission in both excitatory and inhibitory nerve terminals and that this flexibility relies on Ca dependent upregulation of mitochondrial metabolism. Using a genetically encoded ATP sensor, we show that inhibitory axons fueled by ketones sustain much higher ATP levels under steady state conditions than excitatory axons, but that the kinetics of ATP production following activity are slower when using ketones as fuel compared to lactate/pyruvate for both excitatory and inhibitory neurons.
生酮饮食是治疗耐药性癫痫的一种有效方法,但其治疗机制尚不清楚。虽然酮类能够为大脑提供能量,但尚不清楚酮类是否能在足够快的时间尺度上被神经元直接代谢,以满足持续突触传递的生物能量需求。在这里,我们表明神经末梢可以以细胞自主的方式利用酮体β-羟基丁酸酯来支持兴奋性和抑制性神经末梢的神经传递,并且这种灵活性依赖于钙依赖性的线粒体代谢上调。使用一种基因编码的ATP传感器,我们发现,在稳态条件下,由酮类提供能量的抑制性轴突维持的ATP水平比兴奋性轴突高得多,但与乳酸/丙酮酸相比,对于兴奋性和抑制性神经元,使用酮类作为燃料时,活动后ATP产生的动力学较慢。