Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
Sci Adv. 2024 Aug 23;10(34):eadn6016. doi: 10.1126/sciadv.adn6016. Epub 2024 Aug 21.
Although certain drivers of familial Parkinson's disease (PD) compromise mitochondrial integrity, whether metabolic deficits underly other idiopathic or genetic origins of PD is unclear. Here, we demonstrate that phosphoglycerate kinase 1 (PGK1), a gene in the PARK12 susceptibility locus, is rate limiting in neuronal glycolysis and that modestly increasing PGK1 expression boosts neuronal adenosine 5'-triphosphate production kinetics that is sufficient to suppress PARK20-driven synaptic dysfunction. We found that this activity enhancement depends on the molecular chaperone PARK7/DJ-1, whose loss of function significantly disrupts axonal bioenergetics. In vivo, viral expression of PGK1 confers protection of striatal dopamine axons against metabolic lesions. These data support the notion that bioenergetic deficits may underpin PD-associated pathologies and point to improving neuronal adenosine 5'-triphosphate production kinetics as a promising path forward in PD therapeutics.
虽然家族性帕金森病 (PD) 的某些驱动因素会损害线粒体完整性,但代谢缺陷是否是其他特发性或遗传 PD 起源的基础尚不清楚。在这里,我们证明磷酸甘油酸激酶 1 (PGK1) 是 PARK12 易感性位点中的一个基因,它在神经元糖酵解中起限速作用,适度增加 PGK1 的表达可以提高神经元三磷酸腺苷的产生动力学,足以抑制 PARK20 驱动的突触功能障碍。我们发现,这种活性增强取决于分子伴侣 PARK7/DJ-1,其功能丧失会严重破坏轴突生物能量学。在体内,PGK1 的病毒表达赋予多巴胺轴突对代谢损伤的保护作用。这些数据支持这样一种观点,即生物能量学缺陷可能是 PD 相关病理的基础,并指出改善神经元三磷酸腺苷的产生动力学可能是 PD 治疗的一个有前途的方向。