Ye Ling-Ying, Li Shu-Feng, Zuo Jing-Jing, Li Jin, Ma Hui-Xiang
National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
Int J Ophthalmol. 2024 Jun 18;17(6):1086-1093. doi: 10.18240/ijo.2024.06.14. eCollection 2024.
To evaluate the effect of low-degree astigmatism on objective visual quality through the Optical Quality Analysis System (OQAS).
This study enrolled 46 participants (aged 23 to 30y, 90 eyes) with normal or corrected-to-normal vision. The cylindrical lenses (0, 0.5, 0.75, 1.0, and 1.25 D) were placed at the axial direction (180°, 45°, 90°, and 135°) in front of the eyes with the best correction to form 16 types of regular low-degree astigmatism. OQAS was used to detect the objective visual quality, recorded as the objective scattering index (OSI), OQAS values at contrasts of 100%, 20%, and 9% predictive visual acuity (OV100%, OV20%, and OV9%), modulation transfer function cut-off (MTF) and Strehl ratio (SR). The mixed effect linear model was used to compare objective visual quality differences between groups and examine associations between astigmatic magnitude and objective visual quality parameters.
Apparent negative relationships between the magnitude of low astigmatism and objective visual quality were observed. The increase of OSI per degree of astigmatism at 180°, 45°, 90°, and 135° axis were 0.38 (95%CI: 0.35, 0.42), 0.50 (95%CI: 0.46, 0.53), 0.49 (95%CI: 0.45, 0.54) and 0.37 (95%CI: 0.34, 0.41), respectively. The decrease of MTF per degree of astigmatism at 180°, 45°, 90°, and 135° axis were -10.30 (95%CI: -11.43, -9.16), -12.73 (95%CI: -13.62, -11.86), -12.75 (95%CI: -13.79, -11.70), and -9.97 (95%CI: -10.92, -9.03), respectively. At the same astigmatism degree, OSI at 45° and 90° axis were higher than that at 0° and 135° axis, while MTF were lower.
Low astigmatism of only 0.50 D can significantly reduce the objective visual quality.
通过光学质量分析系统(OQAS)评估低度散光对客观视觉质量的影响。
本研究纳入了46名视力正常或矫正至正常的参与者(年龄23至30岁,90只眼)。将柱面透镜(0、0.5、0.75、1.0和1.25 D)沿轴向(180°、45°、90°和135°)放置在最佳矫正视力的眼前,以形成16种类型的规则低度散光。使用OQAS检测客观视觉质量,记录为客观散射指数(OSI)、100%、20%和9%预测视力下的OQAS值(OV100%、OV20%和OV9%)、调制传递函数截止频率(MTF)和斯特列尔比(SR)。采用混合效应线性模型比较各组之间的客观视觉质量差异,并检验散光度数与客观视觉质量参数之间的关联。
观察到低度散光度数与客观视觉质量之间存在明显的负相关关系。在180°、45°、90°和135°轴上,每增加1度散光,OSI的增加值分别为0.38(95%CI:0.35,0.42)、0.50(95%CI:0.46,0.53)、0.49(95%CI:0.45,0.54)和0.37(95%CI:0.34,0.41)。在180°、45°、90°和135°轴上,每增加1度散光,MTF的降低值分别为-10.30(95%CI:-11.43,-9.16)、-12.73(95%CI:-13.62,-11.86)、-12.75(95%CI:-13.79,-11.70)和-9.97(95%CI:-10.92,-9.03)。在相同散光度数下,45°和90°轴上的OSI高于0°和135°轴上的OSI,而MTF则较低。
仅0.50 D的低度散光就能显著降低客观视觉质量。