Institute for Theoretical Studies, ETH Zürich, 8092, Zürich, Switzerland.
Université de Franche-Comté, CNRS, LmB, F-25000, Besançon, France.
Bull Math Biol. 2024 Jun 19;86(8):94. doi: 10.1007/s11538-024-01316-x.
In a recent paper, the question of determining the fraction of binary trees that contain a fixed pattern known as the snowflake was posed. We show that this fraction goes to 1, providing two very different proofs: a purely combinatorial one that is quantitative and specific to this problem; and a proof using branching process techniques that is less explicit, but also much more general, as it applies to any fixed patterns and can be extended to other trees and networks. In particular, it follows immediately from our second proof that the fraction of d-ary trees (resp. level-k networks) that contain a fixed d-ary tree (resp. level-k network) tends to 1 as the number of leaves grows.
在最近的一篇论文中,提出了确定包含固定模式(称为雪花)的二叉树的比例的问题。我们证明了这个比例趋向于 1,提供了两个非常不同的证明:一个是纯粹组合的,定量的,专门针对这个问题的证明;另一个是使用分支过程技术的证明,虽然不太显式,但也更普遍,因为它适用于任何固定模式,并可以扩展到其他树和网络。特别地,从我们的第二个证明中可以立即得出,包含固定的 d 元树(或层次 k 网络)的 d 元树(或层次 k 网络)的比例随着叶子数量的增加而趋向于 1。