Suppr超能文献

基于高斯过程可变形模型的眼眶缺损的虚拟重建。

Virtual reconstruction of orbital defects using Gaussian process morphable models.

机构信息

Department of Computer Science, KU Leuven, Leuven, Belgium.

Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.

出版信息

Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1909-1917. doi: 10.1007/s11548-024-03200-4. Epub 2024 Jun 19.

Abstract

PURPOSE

The conventional method to reconstruct the bone level for orbital defects, which is based on mirroring and manual adaptation, is time-consuming and the accuracy highly depends on the expertise of the clinical engineer. The aim of this study is to propose and evaluate an automated reconstruction method utilizing a Gaussian process morphable model (GPMM).

METHODS

Sixty-five Computed Tomography (CT) scans of healthy midfaces were used to create a GPMM that can model shape variations of the orbital region. Parameter optimization was performed by evaluating several quantitative metrics inspired on the shape modeling literature, e.g. generalization and specificity. The reconstruction error was estimated by reconstructing artificial defects created in orbits from fifteen CT scans that were not included in the GPMM. The developed algorithms utilize the existing framework of Gaussian process morphable models, as implemented in the Scalismo software.

RESULTS

By evaluating the proposed quality metrics, adequate parameters are chosen for non-rigid registration and reconstruction. The resulting median reconstruction error using the GPMM was lower (0.35 ± 0.16 mm) compared to the mirroring method (0.52 ± 0.18 mm). In addition, the GPMM-based reconstruction is automated and can be applied to large bilateral defects with a median reconstruction error of 0.39 ± 0.11 mm.

CONCLUSION

The GPMM-based reconstruction proves to be less time-consuming and more accurate than reconstruction by mirroring. Further validation through clinical studies on patients with orbital defects is warranted. Nevertheless, the results underscore the potential of GPMM-based reconstruction as a promising alternative for designing patient-specific implants.

摘要

目的

基于镜像和手动适配的传统方法来重建眼眶缺损的骨水平,既耗时又高度依赖临床工程师的专业知识。本研究旨在提出并评估一种利用高斯过程可变形模型(GPMM)的自动重建方法。

方法

使用 65 例健康中面部的计算机断层扫描(CT)来创建一个 GPMM,该模型可以模拟眼眶区域的形状变化。通过评估几种受形状建模文献启发的定量指标(例如泛化性和特异性)来进行参数优化。通过在十五例未包含在 GPMM 中的 CT 扫描中重建人工创建的眶部缺陷来估计重建误差。所开发的算法利用高斯过程可变形模型现有的 Scalismo 软件框架。

结果

通过评估所提出的质量指标,选择了适当的参数进行非刚性配准和重建。与镜像法(0.52±0.18mm)相比,使用 GPMM 的重建中位数误差较低(0.35±0.16mm)。此外,基于 GPMM 的重建是自动化的,可应用于具有中位数重建误差为 0.39±0.11mm 的大型双侧缺陷。

结论

基于 GPMM 的重建比镜像法耗时更少,更准确。通过对患有眼眶缺损的患者进行临床研究进一步验证是必要的。然而,结果强调了基于 GPMM 的重建作为设计患者特定植入物的有前途的替代方法的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验