Suppr超能文献

迟发性脑缺血外周血生物标志物分析中关键基因和免疫浸润的鉴定:丙戊酸作为一种潜在的治疗药物。

Identification of key genes and immune infiltration in peripheral blood biomarker analysis of delayed cerebral ischemia: Valproic acid as a potential therapeutic drug.

机构信息

Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China.

Neurosurgery Third Department, Baoding NO.1 Central Hospital, 320 Changcheng North Street, Baoding City, Hebei Province, China.

出版信息

Int Immunopharmacol. 2024 Aug 20;137:112408. doi: 10.1016/j.intimp.2024.112408. Epub 2024 Jun 18.

Abstract

BACKGROUND

Delayed cerebral ischemia (DCI) is a common and serious complication of subarachnoid hemorrhage (SAH). Its pathogenesis is not fully understood. Here, we developed a predictive model based on peripheral blood biomarkers and validated the model using several bioinformatic multi-analysis methods.

METHODS

Six datasets were obtained from the GEO database. Characteristic genes were screened using weighted correlation network analysis (WGCNA) and differentially expressed genes. Three machine learning algorithms, elastic networks-LASSO, support vector machines (SVM-RFE) and random forests (RF), were also used to construct diagnostic prediction models for key genes. To further evaluate the performance and predictive value of the diagnostic models, nomogram model were constructed, and the clinical value of the models was assessed using Decision Curve Analysis (DCA), Area Under the Check Curve (AUC), Clinical Impact Curve (CIC), and validated in the mouse single-cell RNA-seq dataset. Mendelian randomization(MR) analysis explored the causal relationship between SAH and stroke, and the intermediate influencing factors. We validated this by retrospectively analyzing the qPCR levels of the most relevant genes in SAH and SAH-DCI patients. This experiment demonstrated a statistically significant difference between SAH and SAH-DCI and normal group controls. Finally, potential small molecule compounds interacting with the selected features were screened from the Comparative Toxicogenomics Database (CTD).

RESULTS

The fGSEA results showed that activation of Toll-like receptor signaling and leukocyte transendothelial cell migration pathways were positively correlated with the DCI phenotype, whereas cytokine signaling pathways and natural killer cell-mediated cytotoxicity were negatively correlated. Consensus feature selection of DEG genes using WGCNA and three machine learning algorithms resulted in the identification of six genes (SPOCK2, TRRAP, CIB1, BCL11B, PDZD8 and LAT), which were used to predict DCI diagnosis with high accuracy. Three external datasets and the mouse single-cell dataset showed high accuracy of the diagnostic model, in addition to high performance and predictive value of the diagnostic model in DCA and CIC. MR analysis looked at stroke after SAH independent of SAH, but associated with multiple intermediate factors including Hypertensive diseases, Total triglycerides levels in medium HDL and Platelet count. qPCR confirmed that significant differences in DCI signature genes were observed between the SAH and SAH-DCI groups. Finally, valproic acid became a potential therapeutic agent for DCI based on the results of target prediction and molecular docking of the characterized genes.

CONCLUSION

This diagnostic model can identify SAH patients at high risk for DCI and may provide potential mechanisms and therapeutic targets for DCI. Valproic acid may be an important future drug for the treatment of DCI.

摘要

背景

迟发性脑缺血(DCI)是蛛网膜下腔出血(SAH)的常见且严重的并发症。其发病机制尚未完全阐明。在这里,我们基于外周血生物标志物开发了一个预测模型,并使用几种生物信息学多分析方法对该模型进行了验证。

方法

从 GEO 数据库中获得了六个数据集。使用加权相关网络分析(WGCNA)和差异表达基因筛选特征基因。还使用三种机器学习算法,弹性网络-LASSO、支持向量机(SVM-RFE)和随机森林(RF),构建关键基因的诊断预测模型。为了进一步评估诊断模型的性能和预测价值,构建了列线图模型,并使用决策曲线分析(DCA)、曲线下面积(AUC)、临床影响曲线(CIC)评估模型的临床价值,并在小鼠单细胞 RNA-seq 数据集上进行验证。孟德尔随机分析(MR)探讨了 SAH 与中风之间的因果关系以及中间影响因素。我们通过回顾性分析 SAH 和 SAH-DCI 患者最相关基因的 qPCR 水平来验证这一点。该实验表明 SAH 和 SAH-DCI 与正常组对照之间存在统计学上的显著差异。最后,从比较毒理学基因组学数据库(CTD)筛选与选定特征相互作用的潜在小分子化合物。

结果

fGSEA 结果表明,Toll 样受体信号和白细胞穿过内皮细胞迁移途径的激活与 DCI 表型呈正相关,而细胞因子信号和自然杀伤细胞介导的细胞毒性呈负相关。使用 WGCNA 和三种机器学习算法对 DEG 基因进行共识特征选择,确定了六个基因(SPOCK2、TRRAP、CIB1、BCL11B、PDZD8 和 LAT),可用于准确预测 DCI 诊断。三个外部数据集和小鼠单细胞数据集显示诊断模型具有高准确性,此外,诊断模型在 DCA 和 CIC 中的性能和预测价值也很高。MR 分析着眼于独立于 SAH 的中风,但与包括高血压疾病、中高密度脂蛋白总三酰甘油水平和血小板计数在内的多个中间因素相关。qPCR 证实了 SAH 和 SAH-DCI 组之间 DCI 特征基因存在显著差异。最后,根据特征基因的靶预测和分子对接结果,丙戊酸成为 DCI 的潜在治疗药物。

结论

该诊断模型可识别出发生 DCI 风险较高的 SAH 患者,可能为 DCI 提供潜在的机制和治疗靶点。丙戊酸可能是治疗 DCI 的重要未来药物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验