He Meng, Li Rui, Cheng Chuanqi, Liu Cuibo, Zhang Bin
Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
Nat Commun. 2024 Jun 19;15(1):5231. doi: 10.1038/s41467-024-49544-y.
The high Faradaic efficiency (FE) of the electrocatalytic deuteration of organics with DO at a large current density is significant for deuterated electrosynthesis. However, the FE and current density are the two ends of a seesaw because of the severe D evolution side reaction at nearly industrial current densities. Herein, we report a combined scenario of a nanotip-enhanced electric field and surfactant-modified interface microenvironment to enable the electrocatalytic deuteration of arylacetonitrile in DO with an 80% FE at -100 mA cm. The increased concentration with low activation energy of arylacetonitrile due to the large electric field along the tips and the accelerated arylacetonitrile transfer and suppressed D evolution by the surfactant-created deuterophobic microenvironment contribute to breaking the trade-off between a high FE and large current density. Furthermore, the application of our strategy in other deuteration reactions with improved Faradaic efficiencies at -100 mA cm rationalizes the design concept.
在大电流密度下,利用重水(DO)对有机物进行电催化氘化反应时,高法拉第效率(FE)对于氘化电合成具有重要意义。然而,由于在接近工业电流密度时存在严重的析氘副反应,法拉第效率和电流密度就像跷跷板的两端。在此,我们报道了一种纳米尖端增强电场与表面活性剂修饰界面微环境相结合的方案,该方案能够在-100 mA cm²的电流密度下,以80%的法拉第效率实现芳基乙腈在重水中的电催化氘化反应。沿尖端的强电场导致芳基乙腈浓度增加且活化能降低,同时表面活性剂形成的憎氘微环境加速了芳基乙腈的转移并抑制了析氘反应,这有助于打破高法拉第效率与大电流密度之间的权衡。此外,我们的策略在其他氘化反应中的应用在-100 mA cm²的电流密度下提高了法拉第效率,这也验证了该设计理念的合理性。