Suppr超能文献

场诱导试剂浓度和硫吸附实现了炔烃的高效电催化半氢化反应。

Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes.

作者信息

Gao Ying, Yang Rong, Wang Changhong, Liu Cuibo, Wu Yongmeng, Li Huizhi, Zhang Bin

机构信息

Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.

Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

出版信息

Sci Adv. 2022 Feb 25;8(8):eabm9477. doi: 10.1126/sciadv.abm9477. Epub 2022 Feb 23.

Abstract

Efficient electrocatalytic alkyne semihydrogenation with potential/time-independent selectivity and Faradaic efficiency (FE) is vital for industrial alkene productions. Here, sulfur-tuned effects and field-induced reagent concentration are proposed to promote electrocatalytic alkyne semihydrogenation. Density functional theory calculations reveal that bulk sulfur anions intrinsically weaken alkene adsorption, and surface thiolates lower the activation energy of water and the Gibbs free energy for H* formation. The finite element method shows high-curvature structured catalyst concentrates K by enhancing electric field at the tips, accelerating more H* formation from water electrolysis via sulfur anion-hydrated cation networks, and promoting alkyne transformations. So, self-supported Pd nanotips with sulfur modifiers are developed for electrochemical alkyne semihydrogenation with up to 97% conversion yield, 96% selectivity, 75% FE, and a reaction rate of 465.6 mmol m hour. Wide potential window and time irrelevance for high alkene selectivity, good universality, and easy access to deuterated alkenes highlight the promising potential.

摘要

高效的电催化炔烃半氢化反应,具有与电位/时间无关的选择性和法拉第效率(FE),对工业烯烃生产至关重要。在此,提出了硫调谐效应和场诱导试剂浓度来促进电催化炔烃半氢化反应。密度泛函理论计算表明,体相硫阴离子本质上会削弱烯烃吸附,而表面硫醇盐会降低水的活化能和H形成的吉布斯自由能。有限元方法表明,高曲率结构催化剂通过增强尖端的电场来浓缩K,通过硫阴离子 - 水合阳离子网络加速更多来自水电解的H形成,并促进炔烃转化。因此,开发了具有硫修饰剂的自支撑钯纳米尖端用于电化学炔烃半氢化反应,转化率高达97%,选择性为96%,FE为75%,反应速率为465.6 mmol m⁻² h⁻¹。宽电位窗口和高烯烃选择性与时间无关、良好的通用性以及易于获得氘代烯烃突出了其广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d5c/8865775/8464cf870746/sciadv.abm9477-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验