University of Antwerp - imec, IDLab - Faculty of Applied Engineering, Sint-Pietersvliet 7, Antwerp, 2000, Belgium.
Department of Communication Studies, Faculty of Social Sciences, University of Antwerp, Antwerp, 2000, Belgium.
Sci Data. 2024 Jun 19;11(1):648. doi: 10.1038/s41597-024-03429-3.
The EmoWear dataset provides a bridge to explore Emotion Recognition (ER) via Seismocardiography (SCG), the measurement of small cardio-respiratory induced vibrations on the chest wall through Inertial Measurement Units (IMUs). We recorded Accelerometer (ACC), Gyroscope (GYRO), Electrocardiography (ECG), Blood Volume Pulse (BVP), Respiration (RSP), Electrodermal Activity (EDA), and Skin Temperature (SKT) data from 49 participants who watched validated emotionally stimulating video clips. They self-assessed their emotional valence, arousal, and dominance, as well as extra questions about the video clips. Also, we asked the participants to walk, talk, and drink, so that researchers can detect gait, voice, and swallowing using the same IMU. We demonstrate the effectiveness of emotion stimulation with statistical methods and verify the quality of the collected signals through signal-to-noise ratio and correlation analysis. EmoWear can be used for ER via SCG, ER during gait, multi-modal ER, and the study of IMUs for context-awareness. Targeted contextual information include emotions, gait, voice activity, and drinking, all having the potential to be sensed via a single IMU.
EmoWear 数据集提供了一个桥梁,通过地震心动图(SCG)探索情感识别(ER),通过惯性测量单元(IMU)测量胸部的微小心肺引起的振动。我们从 49 名观看经过验证的情感刺激视频剪辑的参与者那里记录了加速度计(ACC)、陀螺仪(GYRO)、心电图(ECG)、血压脉搏(BVP)、呼吸(RSP)、皮肤电活动(EDA)和皮肤温度(SKT)数据。他们自我评估了自己的情绪效价、唤醒度和支配度,以及关于视频剪辑的额外问题。此外,我们还要求参与者行走、说话和喝水,以便研究人员可以使用相同的 IMU 检测步态、语音和吞咽。我们通过统计方法展示了情感刺激的有效性,并通过信噪比和相关分析验证了所收集信号的质量。EmoWear 可用于通过 SCG 进行 ER、步态期间的 ER、多模态 ER 以及用于上下文感知的 IMU 研究。目标上下文信息包括情绪、步态、语音活动和饮水,所有这些都有可能通过单个 IMU 感知到。