Business Intelligence Lab, Baidu Research, Beijing, China.
China Longyuan Power Group Corp. Ltd., Beijing, China.
Sci Data. 2024 Jun 19;11(1):649. doi: 10.1038/s41597-024-03427-5.
Wind power is a clean and renewable energy, yet it poses integration challenges to the grid due to its variable nature. Thus, Wind Power Forecasting (WPF) is crucial for its successful integration. However, existing WPF datasets often cover only a limited number of turbines and lack detailed information. To bridge this gap and advance WPF research, we introduce the Spatial Dynamic Wind Power Forecasting dataset (SDWPF). The SDWPF dataset not only provides information on power generation and wind speed but also details the spatial distribution of the wind turbines and dynamic contextual factors specific to each turbine. These factors include weather information and the internal status of each wind turbine, thereby enriching the dataset and improving its applicability for predictive analysis. Further leveraging the potential of SDWPF, we initiated the ACM KDD Cup 2022, a competition distinguished as the foremost annual event in data mining, renowned for presenting cutting-edge challenges and attracting top talent from academia and industry. Our event successfully draws registrations from over 2400 teams around the globe.
风力发电是一种清洁可再生能源,但由于其性质多变,给电网的集成带来了挑战。因此,风力发电预测(WPF)对于其成功集成至关重要。然而,现有的 WPF 数据集通常只涵盖有限数量的风力涡轮机,并且缺乏详细信息。为了弥合这一差距并推进 WPF 研究,我们引入了空间动态风力发电预测数据集(SDWPF)。SDWPF 数据集不仅提供了发电和风速信息,还详细说明了风力涡轮机的空间分布以及每个涡轮机特定的动态上下文因素。这些因素包括天气信息和每个风力涡轮机的内部状态,从而丰富了数据集并提高了其在预测分析中的适用性。进一步利用 SDWPF 的潜力,我们发起了 ACM KDD Cup 2022,这是一个数据挖掘领域的年度盛事,以提出前沿挑战和吸引学术界和工业界的顶尖人才而闻名。我们的活动成功吸引了来自全球 2400 多个团队的注册。