Suppr超能文献

电子和空穴掺杂的伯纳尔双层石墨烯中的可调超导性。

Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene.

机构信息

Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.

Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Nature. 2024 Jul;631(8020):300-306. doi: 10.1038/s41586-024-07584-w. Epub 2024 Jun 19.

Abstract

Graphene-based, high-quality, two-dimensional electronic systems have emerged as a highly tunable platform for studying superconductivity. Specifically, superconductivity has been observed in both electron- and hole-doped twisted graphene moiré systems, whereas in crystalline graphene systems, superconductivity has so far been observed only in hole-doped rhombohedral trilayer graphene (RTG) and hole-doped Bernal bilayer graphene (BBG). Recently, enhanced superconductivity has been demonstrated in BBG because of the proximity to a monolayer WSe. Here we report the observation of superconductivity and a series of flavour-symmetry-breaking phases in electron- and hole-doped BBG/WSe devices by electrostatic doping. The strength of the observed superconductivity is tunable by applied vertical electric fields. The maximum Berezinskii-Kosterlitz-Thouless transition temperature for the electron- and hole-doped superconductivity is about 210 mK and 400 mK, respectively. Superconductivities emerge only when the applied electric fields drive the BBG electron or hole wavefunctions towards the WSe layer, underscoring the importance of the WSe layer in the observed superconductivity. The hole-doped superconductivity violates the Pauli paramagnetic limit, consistent with an Ising-like superconductor. By contrast, the electron-doped superconductivity obeys the Pauli limit, although the proximity-induced Ising spin-orbit coupling is also notable in the conduction band. Our findings highlight the rich physics associated with the conduction band in BBG, paving the way for further studies into the superconducting mechanisms of crystalline graphene and the development of superconductor devices based on BBG.

摘要

基于石墨烯的高质量二维电子系统已成为研究超导性的高度可调平台。具体来说,在电子和空穴掺杂的扭曲石墨烯莫尔超晶格系统中已经观察到了超导性,而在结晶石墨烯系统中,迄今为止仅在空穴掺杂的菱面体三层石墨烯(RTG)和空穴掺杂的伯纳尔双层石墨烯(BBG)中观察到了超导性。最近,由于接近单层 WSe,在 BBG 中已经证明了增强的超导性。在这里,我们通过静电掺杂报道了在电子和空穴掺杂的 BBG/WSe 器件中观察到的超导性和一系列味对称破缺相。观察到的超导性的强度可以通过施加的垂直电场来调节。电子和空穴掺杂超导性的最大 Berezinskii-Kosterlitz-Thouless 转变温度分别约为 210 mK 和 400 mK。只有当施加的电场将 BBG 的电子或空穴波函数驱动到 WSe 层时,才会出现超导性,这突出了 WSe 层在观察到的超导性中的重要性。空穴掺杂超导性违反了泡利顺磁极限,与类 Ising 超导体一致。相比之下,电子掺杂超导性遵守泡利极限,尽管近藤诱导的 Ising 自旋轨道耦合在导带中也很明显。我们的发现突出了与 BBG 导带相关的丰富物理,为进一步研究结晶石墨烯的超导机制以及基于 BBG 的超导器件的发展铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验