Srivastava Pawan Kumar, Hassan Yasir, Lee Seungjun, Joe Minwoong, Abbas Muhammad Sabbtain, Ahn Hyobin, Tiwari Ankita, Ghosh Subhasis, Yoo Won Jong, Singh Budhi, Low Tony, Lee Changgu
School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea.
Department of Materials Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34143, South Korea.
Small. 2024 Oct;20(42):e2402604. doi: 10.1002/smll.202402604. Epub 2024 Jun 19.
Dzyaloshinskii-Moriya interaction (DMI) is shown to induce a topologically protected chiral spin texture in magnetic/nonmagnetic heterostructures. In the context of van der Waals spintronic devices, graphene emerges as an excellent candidate material. However, due to its negligible spin-orbit interaction, inducing DMI to stabilize topological spins when coupled to 3d-ferromagnets remains challenging. Here, it is demonstrated that, despite these challenges, a sizeable Rashba-type spin splitting followed by significant DMI is induced in graphene/FeGeTe. This is made possible due to an interfacial electric field driven by charge asymmetry together with the broken inversion symmetry of the heterostructure. These findings reveal that the enhanced DMI energy parameter, resulting from a large effective electron mass in FeGeTe, remarkably contributes to stabilizing non-collinear spins below the Curie temperature, overcoming the magnetic anisotropy energy. These results are supported by the topological Hall effect, which coexists with the non-trivial breakdown of Fermi liquid behavior, confirming the interplay between spins and non-trivial topology. This work paves the way toward the design and control of interface-driven skyrmion-based devices.
季亚洛欣斯基-莫利亚相互作用(DMI)被证明能在磁性/非磁性异质结构中诱导出一种拓扑保护的手性自旋纹理。在范德华自旋电子器件的背景下,石墨烯成为一种优秀的候选材料。然而,由于其自旋轨道相互作用可忽略不计,在与三维铁磁体耦合时诱导DMI以稳定拓扑自旋仍然具有挑战性。在此,证明了尽管存在这些挑战,但在石墨烯/FeGeTe中诱导出了可观的 Rashba 型自旋分裂,随后产生了显著的 DMI。这是由于电荷不对称驱动的界面电场以及异质结构的反演对称性破缺而成为可能。这些发现表明,FeGeTe 中较大的有效电子质量导致的增强的 DMI 能量参数,显著有助于在居里温度以下稳定非共线自旋,克服磁各向异性能量。这些结果得到了拓扑霍尔效应的支持,拓扑霍尔效应与费米液体行为的非平凡破坏共存,证实了自旋与非平凡拓扑之间的相互作用。这项工作为基于界面驱动的斯格明子器件的设计和控制铺平了道路。