Suppr超能文献

基于半监督渐进多粒度高效网络的慢性伤口图像增强与评估

Chronic Wound Image Augmentation and Assessment Using Semi-Supervised Progressive Multi-Granularity EfficientNet.

作者信息

Liu Ziyang, Agu Emmanuel, Pedersen Peder, Lindsay Clifford, Tulu Bengisu, Strong Diane

机构信息

Computer Science DepartmentWorcester Polytechnic Institute Worcester MA 01609 USA.

Electrical and Computer Engineering DepartmentWorcester Polytechnic Institute Worcester MA 01609 USA.

出版信息

IEEE Open J Eng Med Biol. 2023 Feb 23;5:404-420. doi: 10.1109/OJEMB.2023.3248307. eCollection 2024.

Abstract

Augment a small, imbalanced, wound dataset by using semi-supervised learning with a secondary dataset. Then utilize the augmented wound dataset for deep learning-based wound assessment. The clinically-validated Photographic Wound Assessment Tool (PWAT) scores eight wound attributes: Size, Depth, Necrotic Tissue Type, Necrotic Tissue Amount, Granulation Tissue type, Granulation Tissue Amount, Edges, Periulcer Skin Viability to comprehensively assess chronic wound images. A small corpus of 1639 wound images labeled with ground truth PWAT scores was used as reference. A Semi-Supervised learning and Progressive Multi-Granularity training mechanism were used to leverage a secondary corpus of 9870 unlabeled wound images. Wound scoring utilized the EfficientNet Convolutional Neural Network on the augmented wound corpus. Our proposed Semi-Supervised PMG EfficientNet (SS-PMG-EfficientNet) approach estimated all 8 PWAT sub-scores with classification accuracies and F1 scores of about 90% on average, and outperformed a comprehensive list of baseline models and had a 7% improvement over the prior state-of-the-art (without data augmentation). We also demonstrate that synthetic wound image generation using Generative Adversarial Networks (GANs) did not improve wound assessment. Semi-supervised learning on unlabeled wound images in a secondary dataset achieved impressive performance for deep learning-based wound grading.

摘要

通过使用带有辅助数据集的半监督学习来扩充一个小的、不平衡的伤口数据集。然后将扩充后的伤口数据集用于基于深度学习的伤口评估。经过临床验证的摄影伤口评估工具(PWAT)对八个伤口属性进行评分:大小、深度、坏死组织类型、坏死组织量、肉芽组织类型、肉芽组织量、边缘、溃疡周围皮肤活力,以全面评估慢性伤口图像。一个包含1639张带有PWAT评分真值标签的伤口图像的小语料库被用作参考。使用半监督学习和渐进多粒度训练机制来利用一个包含9870张未标记伤口图像的辅助语料库。伤口评分在扩充后的伤口语料库上使用高效神经网络卷积神经网络。我们提出的半监督PMG高效神经网络(SS-PMG-EfficientNet)方法平均以约90%的分类准确率和F1分数估计了所有8个PWAT子分数,优于一系列基准模型,并且比之前的最先进技术(无数据增强)提高了7%。我们还证明,使用生成对抗网络(GAN)生成合成伤口图像并不能改善伤口评估。在辅助数据集中对未标记伤口图像进行半监督学习,在基于深度学习的伤口分级方面取得了令人印象深刻的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f70/11186650/dea2e0edaff2/liu1-3248307.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验