Suppr超能文献

微流控装置在肿瘤微环境中细胞活性快速检测中的应用与前景

Application and prospect of microfluidic devices for rapid assay of cell activities in the tumor microenvironment.

作者信息

Zhu Linjing, Cui Xueling, Jiang Lingling, Fang Fang, Liu Boyang

机构信息

Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.

Department of Oral Comprehensive Therapy, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China.

出版信息

Biomicrofluidics. 2024 Jun 17;18(3):031506. doi: 10.1063/5.0206058. eCollection 2024 May.

Abstract

The global impact of cancer on human health has raised significant concern. In this context, the tumor microenvironment (TME) plays a pivotal role in the tumorigenesis and malignant progression. In order to enhance the accuracy and efficacy of therapeutic outcomes, there is an imminent requirement for models that can accurately replicate the intricate characteristics and constituents of TME. Microfluidic devices exhibit notable advantages in investigating the progression and treatment of tumors and have the potential to become a novel methodology for evaluating immune cell activities in TME and assist clinicians in assessing the prognosis of patients. In addition, it shows great advantages compared to traditional cell experiments. Therefore, the review first outlines the applications and advantages of microfluidic chips in facilitating tumor cell culture, constructing TME and investigating immune cell activities. Second, the roles of microfluidic devices in the analysis of circulating tumor cells, tumor prognosis, and drug screening have also been mentioned. Moreover, a forward-looking perspective is discussed, anticipating the widespread clinical adoption of microfluidic devices in the future.

摘要

癌症对人类健康的全球影响引发了重大关注。在此背景下,肿瘤微环境(TME)在肿瘤发生和恶性进展中起着关键作用。为了提高治疗结果的准确性和有效性,迫切需要能够准确复制TME复杂特征和成分的模型。微流控装置在研究肿瘤进展和治疗方面具有显著优势,并有潜力成为评估TME中免疫细胞活性的新方法,并协助临床医生评估患者的预后。此外,与传统细胞实验相比,它显示出巨大优势。因此,本综述首先概述了微流控芯片在促进肿瘤细胞培养、构建TME和研究免疫细胞活性方面的应用和优势。其次,还提到了微流控装置在循环肿瘤细胞分析、肿瘤预后和药物筛选中的作用。此外,还讨论了前瞻性观点,预计微流控装置未来将在临床上广泛应用。

相似文献

1
Application and prospect of microfluidic devices for rapid assay of cell activities in the tumor microenvironment.
Biomicrofluidics. 2024 Jun 17;18(3):031506. doi: 10.1063/5.0206058. eCollection 2024 May.
2
Microphysiological systems as models for immunologically 'cold' tumors.
Front Cell Dev Biol. 2024 Apr 22;12:1389012. doi: 10.3389/fcell.2024.1389012. eCollection 2024.
3
Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment.
Adv Drug Deliv Rev. 2022 Aug;187:114365. doi: 10.1016/j.addr.2022.114365. Epub 2022 Jun 3.
5
The Applications and Challenges of the Development of Tumor Microenvironment Chips.
Cell Mol Bioeng. 2022 Dec 26;16(1):3-21. doi: 10.1007/s12195-022-00755-7. eCollection 2023 Feb.
6
Improving tumor microenvironment assessment in chip systems through next-generation technology integration.
Front Bioeng Biotechnol. 2024 Sep 25;12:1462293. doi: 10.3389/fbioe.2024.1462293. eCollection 2024.
7
On-chip modeling of tumor evolution: Advances, challenges and opportunities.
Mater Today Bio. 2023 Jul 7;21:100724. doi: 10.1016/j.mtbio.2023.100724. eCollection 2023 Aug.
9
Microfluidic devices: The application in TME modeling and the potential in immunotherapy optimization.
Front Genet. 2022 Sep 8;13:969723. doi: 10.3389/fgene.2022.969723. eCollection 2022.
10
High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment.
Acta Biomater. 2021 Sep 15;132:473-488. doi: 10.1016/j.actbio.2021.06.025. Epub 2021 Jun 18.

本文引用的文献

2
Macrophage-Derived Nanosponges Adsorb Cytokines and Modulate Macrophage Polarization for Renal Cell Carcinoma Immunotherapy.
Adv Healthc Mater. 2024 Aug;13(20):e2400303. doi: 10.1002/adhm.202400303. Epub 2024 Apr 30.
3
Pumped and pumpless microphysiological systems to study (nano)therapeutics.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Sep-Oct;15(5):e1911. doi: 10.1002/wnan.1911. Epub 2023 Jul 18.
4
Computer Vision-Based Artificial Intelligence-Mediated Encoding-Decoding for Multiplexed Microfluidic Digital Immunoassay.
ACS Nano. 2023 Jul 25;17(14):13700-13714. doi: 10.1021/acsnano.3c02941. Epub 2023 Jul 17.
5
Optical glucose sensor for microfluidic cell culture systems.
Biosens Bioelectron. 2023 Oct 1;237:115491. doi: 10.1016/j.bios.2023.115491. Epub 2023 Jun 25.
6
The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.
Cancer Cell. 2023 Mar 13;41(3):374-403. doi: 10.1016/j.ccell.2023.02.016.
7
Biofilm Potentiates Cancer-Promoting Effects of Tumor-Associated Macrophages in a 3D Multi-Faceted Tumor Model.
Small. 2023 May;19(19):e2205904. doi: 10.1002/smll.202205904. Epub 2023 Feb 7.
8
Cancer statistics, 2023.
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.
9
Recent progress of microfluidic chips in immunoassay.
Front Bioeng Biotechnol. 2022 Dec 23;10:1112327. doi: 10.3389/fbioe.2022.1112327. eCollection 2022.
10
Multiplexed analysis of signalling proteins at the single-immune cell level.
Lab Chip. 2023 Jan 17;23(2):362-371. doi: 10.1039/d2lc00891b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验